23 research outputs found
From evolutionary morphology towards evolutionary ecology
Entsprechend den Frageweisen nach proximater Ursache bzw. ultimater oder historischer Bedingtheit lassen sich Entwicklungs-, Funktions-, Evolutions- und phylogenetische Morphologie unterscheiden. In der Evolutionsmorphologie wird nach der biologischen Rolle und dem Selektionswert fĂŒr Strukturen gefragt, was sich aus direkter Beobachtung oder Analogievergleich erschlieĂen kann. Ausgehend von detaillierter vergleichender Strukturuntersuchung eröffnet sich damit das Feld der Evolutionsökologie mit dem Ziel der Rekonstruktion historischer Einnischung und ErschlieĂung ökologischer Zonen. Nach Untersuchung der ökologischen Nischen rezenter Arten soll hierbei die jeweilige Ăkonische einer Stammart am Gabelpunkt eines zuvor erstellten Cladogramms (Stammart-Nische) rekonstruiert und ihre jeweilige Transformation durch AbĂ€nderung, Neubildung oder Auflösung von Synergs â jedenfalls in wichtigen Dimensionen der Organismus-Umwelt-Beziehung â herausgearbeitet werden (Nischenfolge). Beispiel einer Nischenfolge ist bei pilzzĂŒchtenden Ameisen (Attini) die Pilzzucht anfĂ€nglich auf Insektenkot als Substrat ĂŒber Teile von BlĂŒtenblĂ€ttern schlieĂlich zu herausgeschnittenen LaubblĂ€ttern. Zur Bildung der Nische wird die Interaktion der Organismen mit der Umwelt und die Gemeinschaftsleistung kooperierender Artgenossen besonders betont. Die Artnische kann sich aus verschiedenen, sich meistens zeitlich ablösenden Teilnischen zusammensetzen, denen in der Regel verschiedene Morphen entsprechen. Dies gilt insbesondere fĂŒr durch Eigenmerkmale gekennzeichnete Larven, deren Metamorphose zum Adultus mit der Verwirklichung einer anderen Teilnische einhergeht. Gravierende Ănderungen der Nische in wenigen Evolutionsschritten sind dann möglich, wenn viele Synergs in einem Block zusammengefasst (geclustert) sind (z.B. Wirtspflanzenwechsel bei Phytophagen) oder wenn Teilnischen (von Ontogenesestadien) aufgegeben werden (z.B. durch Viviparie). VerhaltensĂ€nderungen fĂŒr Nischenerweiterung oder -abĂ€nderung gehen einem tiefgreifenden Lebensweisewechsel durch Bildung einer neuen ökologischen Zone voraus. Der Zusammenhang von Zonenbildung und âMakroevolutionâ wird am Beispiel der Entstehung der Pterygota unter BerĂŒcksichtigung von Umweltlizenzen, PrĂ€adaptationen, VerhaltensĂ€nderungen und evolutiven Anpassungen diskutiert. Die Folge ökologischer Zonen von einer Landwanze hin zu Gerriden auf der MeeresoberflĂ€che wird dargestellt sowie die Zonenfolge von terrestrischen SacktrĂ€ger-Schmetterlingen zu Raupen, die selbst in stark strömenden GewĂ€ssern als Aufwuchsfresser leben. Sechs Punkte des âevolutionsökologischen Programmsâ hin zu einer erklĂ€renden Naturgeschichte werden herausgearbeitet.Based on questions about proximate causes and ultimate and historical conditionality for structural features, we can distinguish developmental morphology, functional morphology, evolutionary morphology, and phylogenetic morphology. Evolutionary morphology focuses on the biological roles and the selective values of structures as inferred from direct observation or by analogy. Based on detailed comparative analyses of structures, the field of evolutionary ecology is opened up. The objective of evolutionary ecology is to reconstruct the historical formation of specific ecological niches and the establishment of ecological zones. In-depth investigations of the ecological niches of extant species allow to reconstruct the ecological niche of any stem species at a point of bifurcation in a cladogram. It is further possible to outline the transformation of the ancestral econiche by change, formation or dissolution of synergs which compose the econiche. Thus, the sequence of econiches can be reconstructed, at least in significant dimensions of the relationship between the organism and its environment (synergs). One example is the sequence of econiches in fungus-growing ants (Attini), which initially used insect feces as fungal substrate, then petals, and finally sections of leaves. To realize an econiche, the interactions of organisms with their environment are essential, as well as collaborative activities of conspecifics. The econiche of a species often consists of different, mostly chronological sub-niches, represented by different morphs. Typical examples are larvae (characterized by larval features) and their sub-niches, separated from the adults and their sub-niches by metamorphosis. Substantial evolutionary changes of a niche can happen in a few steps if many synergs are clustered (for instance during the switch to a novel host), or if sub-niches of ontogenetic stages are abandoned (e.g. by evolution of vivipary). Behavioral alterations which broaden or change the econiche precede the dramatic rearrangement of the mode of life during realization of a new ecological zone. The link between the formation of a new ecozone and âmacroevolutionâ is exemplified by the evolution of Pterygota, taking into consideration ecological licenses, preadaptations, alterations of behavior and evolutionary adaptations. The sequence of ecozones during the evolution of a terrestrial true bug towards Gerridae living on the water surface of open oceans is presented, as well as the sequence of ecozones of terrestrial case-building moths towards aquatic caterpillars which feed on algae even in rapidly flowing streams. Six steps of the evolutionary ecology approach towards an explanatory natural history are compiled
Caenorhabditis monodelphis sp. n.: defining 1 the stem morphology 2 and genomics of the genus Caenorhabditis
Background: The genus Caenorhabditis has been central to our understanding of metazoan biology. The best-known species, Caenorhabditis elegans, is but one member of a genus with around 50 known species, and knowledge of these species will place the singular example of C. elegans in a rich phylogenetic context. How did the model come to be as it is today, and what are the dynamics of change in the genus?
Results: As part of this effort to âput C. elegans in its placeâ, we here describe the morphology and genome of Caenorhabditis monodelphis sp. n., previously known as Caenorhabditis sp. 1. Like many other Caenorhabditis, C. monodelphis sp. n. has a phoretic association with a transport host, in this case with the fungivorous beetle Cis castaneus. Using genomic data, we place C. monodelphis sp. n. as sister to all other Caenorhabditis for which genome data are available. Using this genome phylogeny, we reconstruct the stemspecies morphological pattern of Caenorhabditis.
Conclusions: With the morphological and genomic description of C. monodelphis sp. n., another key species for evolutionary and developmental studies within Caenorhabditis becomes available. The most important characters are its early diverging position, unique morphology for the genus and its similarities with the hypothetical ancestor of Caenorhabditis
Pellioditis pelhamensis n. sp. (Nematoda: Rhabditidae) and Pellioditis pellio (Schneider, 1866), earthworm associates from different subclades within Pellioditis (syn. Phasmarhabditis AndrĂĄssy, 1976)
Recently, much attention has been focused on a group of rhabditid nematodes called Phasmarhabditis, a junior synonym of Pellioditis, as a promising source of biocontrol agents for invasive slugs. Pellioditis pelhamensis n. sp. was first isolated from earthworms near Pelham Bay Park in Bronx, New York, USA, in 1990 and has been found to be pathogenic to slugs as well as some earthworms. It has also been used in several comparative developmental studies. Here, we provide a description of this species, as well as a redescription of a similar earthworm-associated nematode, Pellioditis pellio Schneider, 1866, re-isolated from the type locality. Although P. pelhamensis n. sp. and P. pellio are morphologically similar, they are reproductively isolated. Molecular phylogenetic analysis places both species in a clade that includes all species previously described as Phasmarhabditis which are associated with gastropods. Phasmarhabditis AndrĂĄssy, 1976 is therefore a junior synonym of Pellioditis Dougherty, 1953. Also, Pellioditis bohemica Nermutâ, PĆŻĆŸa, Mekete & MrĂĄÄek, 2017, described to be a facultative parasite of slugs, is found to be a junior synonym of Pellioditis pellio (Schneider, 1866), adding to evidence that P. pellio is associated with both slugs and earthworms. The earthworm-associated species P. pelhamensis n. sp. and P. pellio represent different subclades within Pellioditis, suggesting that Pellioditis species in general have a broader host range than just slugs. Because of this, caution is warranted in using these species as biological control agents until more is understood about their ecology
Comparative genomics of 10 new Caenorhabditis species
Abstract The nematode Caenorhabditis elegans has been central to the understanding of metazoan biology. However, C. elegans is but one species among millions and the significance of this important model organism will only be fully revealed if it is placed in a rich evolutionary context. Global sampling efforts have led to the discovery of over 50 putative species from the genus Caenorhabditis, many of which await formal species description. Here, we present species descriptions for 10 new Caenorhabditis species. We also present draft genome sequences for nine of these new species, along with a transcriptome assembly for one. We exploit these wholeâgenome data to reconstruct the Caenorhabditis phylogeny and use this phylogenetic tree to dissect the evolution of morphology in the genus. We reveal extensive variation in genome size and investigate the molecular processes that underlie this variation. We show unexpected complexity in the evolutionary history of key developmental pathway genes. These new species and the associated genomic resources will be essential in our attempts to understand the evolutionary origins of the C. elegans model