9 research outputs found

    Internalization Dissociates β2-Adrenergic Receptors

    Get PDF
    G protein-coupled receptors (GPCRs) self-associate as dimers or higher-order oligomers in living cells. The stability of associated GPCRs has not been extensively studied, but it is generally thought that these receptors move between the plasma membrane and intracellular compartments as intact dimers or oligomers. Here we show that β2-adrenergic receptors (β2ARs) that self-associate at the plasma membrane can dissociate during agonist-induced internalization. We use bioluminescence-resonance energy transfer (BRET) to monitor movement of β2ARs between subcellular compartments. BRET between β2ARs and plasma membrane markers decreases in response to agonist activation, while at the same time BRET between β2ARs and endosome markers increases. Energy transfer between β2ARs is decreased in a similar manner if either the donor- or acceptor-labeled receptor is mutated to impair agonist binding and internalization. These changes take place over the course of 30 minutes, persist after agonist is removed, and are sensitive to several inhibitors of arrestin- and clathrin-mediated endocytosis. The magnitude of the decrease in BRET between donor- and acceptor-labeled β2ARs suggests that at least half of the receptors that contribute to the BRET signal are physically segregated by internalization. These results are consistent with the possibility that β2ARs associate transiently with each other in the plasma membrane, or that β2AR dimers or oligomers are actively disrupted during internalization

    Third-Party Bioluminescence Resonance Energy Transfer Indicates Constitutive Association of Membrane Proteins: Application to Class A G-Protein-Coupled Receptors and G-Proteins

    Get PDF
    Many of the molecules that mediate G-protein signaling are thought to constitutively associate with each other in variably stable signaling complexes. Much of the evidence for signaling complexes has come from Förster resonance energy transfer and bioluminescence resonance energy transfer (BRET) studies. However, detection of constitutive protein association with these methods is hampered by nonspecific energy transfer that occurs when donor and acceptor molecules are in close proximity by chance. We show that chemically-induced recruitment of local third-party BRET donors or acceptors reliably separates nonspecific and specific BRET. We use this method to reexamine the constitutive association of class A G-protein-coupled receptors (GPCRs) with other GPCRs and with heterotrimeric G-proteins. We find that β2 adrenoreceptors constitutively associate with each other and with several other class A GPCRs. In contrast, GPCRs and G-proteins are unlikely to exist in stable constitutive preassembled complexes

    CDC37 as a novel target for the treatment of NPM1-ALK expressing anaplastic large cell lymphomas

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.American Cancer Society (ACS-IRG-16-194-07
    corecore