127 research outputs found

    Linear Generalized Nash Equilibrium Problems

    Get PDF
    In der vorliegenden Arbeit werden verallgemeinerte Nash Spiele (LGNEPs) unter Linearitätsannahmen eingeführt und untersucht. Durch Ausnutzung der speziellen Struktur lassen sich theoretische und algorithmische Resultate erzielen, die weit über die Ergebnisse für allgemeine LGNEPs hinausgehen

    Estimation of Nutation Time Constant Model Parameters for On-Axis Spinning Spacecraft

    Get PDF
    Calculating an accurate nutation time constant for a spinning spacecraft is an important step for ensuring mission success. Spacecraft nutation is caused by energy dissipation about the spin axis. Propellant slosh in the spacecraft fuel tanks is the primary source for this dissipation and can be simulated using a forced motion spin table. Mechanical analogs, such as pendulums and rotors, are typically used to simulate propellant slosh. A strong desire exists for an automated method to determine these analog parameters. The method presented accomplishes this task by using a MATLAB Simulink/SimMechanics based simulation that utilizes the Parameter Estimation Tool

    Leveraged least trimmed absolute deviations

    Get PDF
    The design of regression models that are not affected by outliers is an important task which has been subject of numerous papers within the statistics community for the last decades. Prominent examples of robust regression models are least trimmed squares (LTS), where the k largest squared deviations are ignored, and least trimmed absolute deviations (LTA) which ignores the k largest absolute deviations. The numerical complexity of both models is driven by the number of binary variables and by the value k of ignored deviations. We introduce leveraged least trimmed absolute deviations (LLTA) which exploits that LTA is already immune against y-outliers. Therefore, LLTA has only to be guarded against outlying values in x, so-called leverage points, which can be computed beforehand, in contrast to y-outliers. Thus, while the mixed-integer formulations of LTS and LTA have as many binary variables as data points, LLTA only needs one binary variable per leverage point, resulting in a significant reduction of binary variables. Based on 11 data sets from the literature, we demonstrate that (1) LLTA’s prediction quality improves much faster than LTS and as fast as LTA for increasing values of k and (2) that LLTA solves the benchmark problems about 80 times faster than LTS and about five times faster than LTA, in median

    Bounds on the Objective Value of Feasible Roundings

    Get PDF
    For mixed-integer linear and nonlinear optimization problems we study the objective value of feasible points which are constructed by the feasible rounding approaches from Neumann et al. (Comput. Optim. Appl. 72, 309–337, 2019; J. Optim. Theory Appl. 184, 433–465, 2020). We provide a-priori bounds on the deviation of such objective values from the optimal value and apply them to explain and quantify the positive effect of finer grids of integer feasible points on the performance of the feasible rounding approaches. Computational results for large scale knapsack problems illustrate our theoretical findings

    Fluid Sloshing Characteristics in Spacecraft Propellant Tanks with Diaphragms

    Get PDF
    All spacecraft are launched from the Earth as payloads on a launch vehicle. During portions of the launch profile, the spacecraft could be subjected to nearly purely translational oscillatory lateral motions as the launch vehicle control system guides the rocket along its flight path. All partially-filled liquids tanks, even those with diaphragms, exhibit sloshing behavior under these conditions and some tanks can place large loads on their support structures if the sloshing is in resonance with the control system oscillation frequency. The objectives of this project were to conduct experiments using a full-scale model of a flight tank to 1) determine whether launch vehicle vibrations can cause the diaphragm to achieve a repeatable configuration, regardless of initial condition, and 2) identify the slosh characteristics of the propellant tank under flight-like lateral motions for different diaphragm shapes and vibration levels. The test results show that 1) the diaphragm shape is not affected by launch vibrations, and 2) the resonance-like behavior of the fluid and diaphragm is strongly affected by the nonlinear stiffness and damping provided by the diaphragm

    Crossing Minimal Edge-Constrained Layout Planning using Benders Decomposition

    Get PDF
    We present a new crossing number problem, which we refer to as the edge-constrained weighted two-layer crossing number problem (ECW2CN). The ECW2CN arises in layout planning of hose coupling stations at BASF, where the challenge is to find a crossing minimal assignment of tube-connected units to given positions on two opposing layers. This allows the use of robots in an effort to reduce the probability of operational disruptions and to increase human safety. Physical limitations imply maximal length and maximal curvature conditions on the tubes as well as spatial constraints imposed by the surrounding walls. This is the major difference of ECW2CN to all known variants of the crossing number problem. Such as many variants of the crossing number problem, ECW2CN is NP-hard. Because the optimization model grows fast with respect to the input data, we face out-of-memory errors for the monolithic model. Therefore, we develop two solution methods. In the first method, we tailor Benders decomposition toward the problem. The Benders subproblems are solved analytically and the Benders master problem is strengthened by additional cuts. Furthermore, we combine this Benders decomposition with ideas borrowed from fix-and-relax heuristics to design the Dynamic Fix-and-Relax Pump (DFRP). Based on an initial solution, DFRP improves successively feasible points by solving dynamically sampled smaller problems with Benders decomposition. Because the optimization model is a surrogate model for its time-dependent formulation, we evaluate the obtained solutions for different choices of the objective function via a simulation model. All algorithms are implemented efficiently using advanced features of the GuRoBi-Python API, such as callback functions and lazy constraints. We present a case study for BASF using real data and make the real-world data openly available

    Parameter Estimation of Lateral Spacecraft Fuel Slosh

    Get PDF
    Predicting the effect of fuel slosh on the attitude control system of a spacecraft or launch vehicle is a very important and challenging task. Whether the spacecraft is spinning or moving laterally, the dynamic effect of the fuel slosh helps determine whether the spacecraft will remain on its intended trajectory. Three categories of slosh can be caused by launch vehicle or spacecraft maneuvers when the fuel is in the presence of an acceleration field. These are bulk-fluid motion, subsurface wave motion (currents), and free-surface slosh. Each of these slosh types has a periodic component defined by either a spinning or a lateral motion. For spinning spacecraft, all three types of slosh can greatly affect stability. Bulk-fluid motion and free-surface slosh can affect the lateral-slosh characteristics. For either condition, an unpredicted coupled resonance between the spacecraft and its onboard fuel could threaten a mission. This ongoing research effort seeks to improve the accuracy and efficiency of modeling techniques used to predict these types of fluid motions for lateral motion. Particular efforts focus on analyzing the effects of viscoelastic diaphragms on slosh dynamics

    Time Frequency Analysis of Spacecraft Propellant Tank Spinning Slosh

    Get PDF
    Many spacecraft are designed to spin about an axis along the flight path as a means of stabilizing the attitude of the spacecraft via gyroscopic stiffness. Because of the assembly requirements of the spacecraft and the launch vehicle, these spacecraft often spin about an axis corresponding to a minor moment of inertia. In such a case, any perturbation of the spin axis will cause sloshing motions in the liquid propellant tanks that will eventually dissipate enough kinetic energy to cause the spin axis nutation (wobble) to grow further. This spinning slosh and resultant nutation growth is a primary design problem of spinning spacecraft and one that is not easily solved by analysis or simulation only. Testing remains the surest way to address spacecraft nutation growth. This paper describes a test method and data analysis technique that reveal the resonant frequency and damping behavior of liquid motions in a spinning tank. Slosh resonant frequency and damping characteristics are necessary inputs to any accurate numerical dynamic simulation of the spacecraft

    Using CFD Techniques to Predict Slosh Force Frequency and Damping Rate

    Get PDF
    Resonant effects and energy dissipation due to sloshing fuel inside propellant tanks are problems that arise in the initial design of any spacecraft or launch vehicle. A faster and more reliable method for calculating these effects during the design stages is needed. Using Computational Fluid Dynamics (CFD) techniques, a model of these fuel tanks can be created and used to predict important parameters such as resonant slosh frequency and damping rate. This initial study addresses the case of free surface slosh. Future studies will focus on creating models for tanks fitted with propellant management devices (PMD) such as diaphragms and baffles

    Parameter Estimation of Spacecraft Fuel Slosh Model

    Get PDF
    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation
    • …
    corecore