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Abstract
For mixed-integer linear and nonlinear optimization problems we study the objective value
of feasible points which are constructed by the feasible rounding approaches from Neumann
et al. (Comput. Optim. Appl. 72, 309–337, 2019; J. Optim. Theory Appl. 184, 433–465,
2020). We provide a-priori bounds on the deviation of such objective values from the opti-
mal value and apply them to explain and quantify the positive effect of finer grids of integer
feasible points on the performance of the feasible rounding approaches. Computational
results for large scale knapsack problems illustrate our theoretical findings.
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1 Introduction

In this paper we study the quality of feasible points of mixed-integer linear and nonlinear
optimization problems (MILPs and MINLPs, resp.) as they are constructed by the feasi-
ble rounding approaches from [19, 20]. These approaches are based on a property of the
feasible set which we call granularity and which states that a certain inner parallel set of
the continuously relaxed feasible set is nonempty. The main effect of granularity is that
it relaxes the difficulties imposed by the integrality conditions and hence, under suitable
assumptions, provides a setting in which feasible points of MINLPs may be generated at
low computational cost.
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C. Neumann et al.

Our present analysis is motivated by the successful application of this algorithmic
approach to mixed-integer linear and nonlinear problems in [19] and [20], respectively. In
these papers computational studies of problems from the MIPLIB and MINLPLib libraries
show that granularity may be expected and exploited in various real world applications.
Moreover, the practical performance is observed to improve for optimization problems with
finer grids of integer feasible points, that is, with ‘more integer feasible points relative to
the size of the continuously relaxed feasible set’. This positive effect does not only refer to
the applicability of the granularity concept, but also to the quality of the generated feasible
points in terms of their objective values.

In fact, in applications a small deviation of this objective value from the minimal value
may lead to the decision to accept the feasible point as ‘close enough to optimal’. Otherwise,
a feasible point with low objective value may be used to initialize an appropriate branch-
and-cut method with a small upper bound on the optimal value, or to start a local search
heuristic there (cf., e.g., [4]).

The remainder of this article is structured as follows. Section 2 recalls some preliminar-
ies from [19, 20], such as the main construction needed for the definition of granularity, an
explicit description of a subset of the appearing inner parallel set, and enlargement ideas
which promote the performance of the resulting feasible rounding approach. Section 3 pro-
vides a-priori bounds on the deviation of the objective value of the generated feasible point
from the optimal value, before Section 4 applies these bounds to explain and quantify the
positive effect of fine integer grids on the performance of the feasible rounding approach.
In Section 5 we illustrate our theoretical findings by computational results for large scale
knapsack problems, and some conclusions and final remarks end the article in Section 6.

2 Preliminaries

We study mixed-integer nonlinear optimization problems of the form

MINLP : min
(x,y)∈Rn×Zm

f (x, y) s.t. gi(x, y) ≤ 0, i ∈ I, (x, y) ∈ D

with real-valued functions f , gi , i ∈ I , defined on R
n × R

m, a finite index set I =
{1, . . . , q}, q ∈ N, and a nonempty polyhedral set

D = {(x, y) ∈ R
n × R

m | Ax + By ≤ b}

with some (p, n)-matrix A, (p,m)-matrix B and b ∈ R
p , p ∈ N.

To verify granularity of a given problem MINLP we will impose additional Lipschitz
assumptions for the functions f , gi , i ∈ I , on the set D, and to state the a-priori bounds on
objective values we shall further require convexity of the functions f , gi , i ∈ I . However,
these additional assumptions will only be introduced where necessary, since the granularity
concept also covers various nonlinear instances which, in particular, go beyond the case of
mixed-integer convex optimization problems (MICPs). On the other hand, we shall specify
our general results to mixed-integer linear optimization problems (MILPs) when appropriate
(cf. Example 2 and Corollary 1) and, in particular, we will illustrate them in Section 5 along
some MILP. Note that the presented results are novel not only for MINLPs, but also for
MILPs. While the purely integer case (n = 0) is included in our analysis, we will assume
m, p > 0 throughout this article.
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Bounds on the Objective Value of Feasible Roundings

2.1 Granularity

In the following let us recall some constructions which were presented in [19, 20] for the
case of mixed-integer linear optimization problems (MILPs) and mixed-integer nonlinear
optimization problems (MINLPs), respectively. We shall denote the feasible set of the NLP
relaxation M̂INLP of MINLP by

̂M = {(x, y) ∈ R
n × R

m | (x, y) ∈ D, g(x, y) ≤ 0},
where g denotes the vector of functions gi , i ∈ I . Moreover, for any point (x, y) ∈ R

n×R
m

we call (x̌, y̌) a rounding if

x̌ = x and y̌ ∈ Z
m, |y̌j − yj | ≤ 1

2 , j = 1, . . . , m,

hold, that is, y is rounded componentwise to a point in the mesh Z
m, and x remains

unchanged. Note that a rounding does not have to be unique.
With the sets

B∞
(

0, 1
2

)

:= {y ∈ R
m | ‖y‖∞ ≤ 1

2 } and K := {0} × B∞
(

0, 1
2

)

any rounding of (x, y) obviously satisfies

(x̌, y̌) ∈ ((x, y) + K) ∩ (

R
n × Z

m
)

. (1)

The central object of our technique is the inner parallel set of ̂M with respect to K ,

̂M− := {(x, y) ∈ R
n × R

m | (x, y) + K ⊆ ̂M}.
Any rounding of any point (x, y) ∈ ̂M− must lie in the feasible set M of MINLP since in
view of (1) it satisfies

(x̌, y̌) ∈ ((x, y) + K) ∩ (

R
n × Z

m
) ⊆ ̂M ∩ (

R
n × Z

m
) = M .

Hence, if the inner parallel set ̂M− is nonempty, then also M is nonempty. Of course,
this observation is only useful if the inner parallel set is nonempty, which gives rise to the
following definition.

Definition 1 We call the set M granular if the inner parallel set ̂M− of ̂M is nonempty.
Moreover, we call a problem MINLP granular if its feasible set M is granular.

We remark that [19, 20] provide several examples for granular problems in the linear as
well as in the nonlinear case.

In the terminology of Definition 1 our above observation states that any granular problem
MINLP is consistent. Firstly, this gives rise to a feasibility test for MINLPs and, secondly,
for any granular MINLP one may aim at the explicit computation of some feasible point.
For a discussion of the former aspect we refer to [19, 20] and rather focus on the latter in
the present paper.

To this end we need to compute at least a subset T − of ̂M− explicitly which, like the set
̂M−, is not restricted by integrality constraints. The general idea of the feasible rounding
approaches from [19, 20] is to minimize f over T − and round any optimal point to a point
in M . This employment of the objective function f aims at obtaining a feasible point with
a reasonably good objective value. In Section 3 we shall quantify how ‘bad’ this objective
value may be in the worst case.
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2.2 A Functional Description for the Inner Parallel Set

To obtain a functional description of some set T − ⊆ ̂M− observe that with the abbreviation

G := {(x, y) ∈ R
n × R

m | g(x, y) ≤ 0}
wemay write ̂M = D∩G and that the inner parallel set of ̂M thus satisfies ̂M− = D−∩G−.
From [25, Lemma 2.3] we know the closed form expression for the inner parallel set of D,

D− = {(x, y) ∈ R
n × R

m | Ax + By + ‖β‖1/2 ≤ b}, (2)

where βᵀ
i , i = 1, . . . , p, denote the rows of the matrix B and, by a slight abuse of notation,

‖β‖1 stands for the vector (‖β1‖1, . . . , ‖βp‖1)ᵀ.
Moreover, the definition of the set G− yields its semi-infinite description

G− = {(x, y) ∈ R
n × R

m | (x, y) + K ⊆ G}
= {(x, y) ∈ R

n × R
m | g(x, y + η) ≤ 0 ∀ η ∈ B∞(0, 1

2 )}.
For the derivation of some algorithmically tractable inner approximation of G− we employ
global Lipschitz conditions with respect to y uniformly in x for the functions gi , i ∈ I , on
the set D. This distinction between the roles of x and y is caused by the definition of inner
parallel sets, whose geometric construction only depends on the discrete variable y.

In fact, for any x ∈ R
n we define the set D(x) := {y ∈ R

m | (x, y) ∈ D} and denote by
prxD := {x ∈ R

n | D(x) 	= ∅} the parallel projection of D to the ‘x-space’ Rn. Then the
functions gi , i ∈ I , are assumed to satisfy Lipschitz conditions with respect to the �∞-norm
on the fibers {x} × D(x), independently of the choice of x ∈ prxD.

Assumption 1 For all i ∈ I there exists some Li∞ ≥ 0 such that for all x ∈ prxD and all
y1, y2 ∈ D(x) we have

|gi(x, y1) − gi(x, y2)| ≤ Li∞‖(x, y1) − (x, y2)‖∞ = Li∞‖y1 − y2‖∞.

Some problem classes for which the Lipschitz constants from Assumption 1 can be cal-
culated are discussed in [20]. In particular, if the set D is bounded and the functions gi ,
i ∈ I , are continuously differentiable with respect to y, one may choose

Li∞ = max
(x,y)∈D

‖∇ygi(x, y)‖1, i ∈ I,

which allows to compute such Lipschitz constants for many test instances from the
MINLPLib [20].

Under Assumption 1, and with L∞ denoting the vector of Lipschitz constants Li∞, i ∈ I ,
one may define the set

T − := {

(x, y) ∈ D− | g(x, y) + L∞/2 ≤ 0
}

and show the desired inclusion T − ⊆ ̂M− [20]. Recall that thus any rounding (x̌, y̌) of any
point (x, y) ∈ T − lies in M .

2.3 Enlargements

We point out that it may depend on the geometry of the relaxed feasible set ̂M whether
the feasible set M of MINLP is granular or not. In particular, for MINLPs with binary
variables the standard formulation of ̂M would usually lead to an empty inner parallel set
̂M− [19, 20]. On the other hand, the set ̂M may often be replaced by a set ˜M in such a
way that the corresponding new inner parallel set ˜M− is larger than ̂M−, without losing the
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Bounds on the Objective Value of Feasible Roundings

property that any rounding of any of its elements lies inM . This admits to exploit granularity
also for many MINLPs with binary variables [19, 20].

The main idea for the construction of such enlargements is a preprocessing step for the
functional description of MINLP . It first enlarges the relaxed feasible set ̂M of M to some
set ˜M ⊇ ̂M for which the feasible set M of MINLP can still be written as

M = ˜M ∩ (Rn × Z
m). (3)

Then we call the inner parallel set

˜M− = {(x, y) ∈ R
n × R

m | (x, y) + K ⊆ ˜M}
of ˜M an enlarged inner parallel set of ̂M since the relation ̂M ⊆ ˜M implies ̂M− ⊆ ˜M−.
Depending on the functional description of ˜M and, in particular, the appearing Lipschitz
constants, the inner approximation ˜T − of ˜M− may then be larger than T −.

While there are several options for the construction of enlargements of the set ̂M [20], in
the following let us focus on those resulting from constant additive relaxations Ax + By ≤
b + σ and g(x, y) ≤ τ of its constraints with appropriately chosen vectors σ, τ ≥ 0. Note
that this approach maintains algorithmically attractive properties like the polyhedrality of
D and differentiability or convexity of the functions gi , i ∈ I . We set

Dσ := {(x, y) ∈ R
n × R

m | Ax + By ≤ b + σ }
as well as

Gτ := {(x, y) ∈ R
n × R

m | g(x, y) ≤ τ }.
Clearly, for each ρ := (σ, τ ) ≥ 0 the set

̂Mρ := Dσ ∩ Gτ (4)

satisfies ̂M ⊆ ̂Mρ . If we denote the appropriate choices of ρ for (3) by

R := {ρ ∈ R
p × R

q | ρ ≥ 0, M = ̂Mρ ∩ (Rn × Z
m)}

then for each ρ ∈ R any rounding of any element of ̂M−
ρ lies in M . Furthermore, we have

̂M− ⊆ ̂M−
ρ , so that ̂M−

ρ is more likely to be nonempty than ̂M−. In fact, after preprocessing
̂M to ̂Mρ for some ρ ∈ R, according to Definition 1 the set M and the problem MINLP

are granular and, thus, consistent if the enlarged inner parallel set ̂M−
ρ is nonempty. Note

that due to (4) we may write ̂M−
ρ = D−

σ ∩ G−
τ with

D−
σ = {(x, y) ∈ R

n × R
m | Ax + By + ‖β‖1/2 ≤ b + σ }.

Moreover,
T −

ρ = {(x, y) ∈ D−
σ | g(x, y) + L∞/2 ≤ τ }

is an inner approximation of ̂M−
ρ , where the entries of the vector L∞ are Lipschitz constants

of the functions gi(x, y) − τi , i ∈ I , on Dσ in the sense of Assumption 1. Observe that,
while these Lipschitz constants do not depend on τ , they may well depend on σ . This leads
to the undesirable issue that for ρ ∈ R, despite the inclusion ̂M− ⊆ ̂M−

ρ , the corresponding
inner approximations T − and T −

ρ do not necessarily satisfy T − ⊆ T −
ρ . In the present paper

we do not further discuss this problem, but refer to [20] for its treatment by the alternative
concept of pseudo-granularity.

As a consequence, here we shall study the following version of the feasible rounding
approach by shrink-optimize-round (FRA-SOR) [19, 20]: For a given problem MINLP

compute enlargement parameters ρ = (σ, τ ) ∈ R and corresponding Lipschitz constants of
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the functions gi(x, y) − τi , i ∈ I , on Dσ in the sense of Assumption 1. Then compute an
optimal point (xs

ρ, ys
ρ) of f over T −

ρ , that is, of the problem

P s
ρ : min

(x,y)∈Rn×Rm
f (x, y) s.t. Ax + By + ‖β‖1/2 ≤ b + σ,

g(x, y) + Lσ∞/2 ≤ τ,

and round it to (x̌s
ρ, y̌s

ρ) ∈ M .
Due to rounding effects as well as due to the necessary modifications on the transition

from M to T −
ρ , the generated point (x̌s

ρ, y̌s
ρ) cannot be expected to be optimal for MINLP .

Yet, in the next section we shall show that one can use the close relation of the sets T −
ρ and

̂Mρ to derive an upper bound on the objective value of (x̌s
ρ, y̌s

ρ) that merely depends on the
problem data.

3 Bounds on the Objective Value

Since any point (x̌s
ρ, y̌s

ρ) generated by FRA-SOR is feasible forMINLP , its objective value
v̌s
ρ := f (x̌s

ρ, y̌s
ρ) exceeds the optimal value v of MINLP . Unfortunately, simple examples

illustrate that the gap between v̌s
ρ and v may actually be arbitrarily large [20]. The main aim

of this section is to state an upper bound for the gap v̌s
ρ − v in terms of the problem data.

As v is unknown, we bound it in terms of the optimal value v̂ of the continuously relaxed
problem M̂INLP by

0 ≤ v̌s
ρ − v ≤ v̌s

ρ − v̂. (5)

This bound may be computed explicitly. In fact, after the solution of P s
ρ , in addition only the

relaxed problem M̂INLP has to be solved. Note that in this bound we propose to use the
optimal value v̂ of f over ̂M without any enlargement constructions, rather than the optimal
value of f over ̂Mρ , since this leads to a tighter bound.

While such an a-posteriori bound can be achieved at low computational cost under suit-
able assumptions, it is not useful for investigations with regard to the dependence of the
achieved objective value on the problem data. Hence, next we shall derive an a-priori bound
for v̌s

ρ − v which does not depend on the solution of some auxiliary optimization problem,
but merely on the data of MINLP .

In particular, in Section 4 we will be interested in the behavior of (v̌s
ρ−v)/|v| for different

degrees of integer grid fineness in MINLP , as this will not only confirm but also quantify
the empirically observed fact from [19, 20] that finer grids lead to smaller relative deviations
between v̌s

ρ and v.
For the derivation of the main results in this section let us temporarily ignore the pos-

sibility of enlargements by some ρ ∈ R, but consider the original problem corresponding
to ρ = 0. For our analysis we will assume T − 	= ∅, since otherwise FRA-SOR does not
provide a point (x̌s , y̌s). Subsequently

dist
(

(̂x, ŷ), T −) := inf
(x,y)∈T − ‖(x, y) − (̂x, ŷ)‖ (6)

shall denote the distance of some point (̂x, ŷ) ∈ R
n ×R

m to the set T − with respect to some
norm ‖ · ‖ on R

n × R
m. In addition to the uniform Lipschitz continuity of the functions gi ,

i ∈ I , with respect to the �∞-norm from Assumption 1, in the following we will also need
Lipschitz continuity of f with respect to the norm from (6).
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Assumption 2 There exists some Lf ≥ 0 such that for all (x1, y1), (x2, y2) ∈ D we have

|f (x1, y1) − f (x2, y2)| ≤ Lf ‖(x1, y1) − (x2, y2)‖.

Furthermore, in the following L
f∞ ≥ 0 will denote a Lipschitz constant with respect to

y uniformly in x for f on D with respect to the �∞-norm. Under Assumption 2 a possible,
but not necessarily tight, choice is L

f∞ := κLf with some norm constant κ > 0 such that
for all (x, y) ∈ R

n × R
m we have ‖(x, y)‖ ≤ κ‖(x, y)‖∞. In particular, the existence of

L
f∞ follows from Assumption 2. However, the following example indicates a better choice

for linear objective functions.

Example 1 For a linear objective function f (x, y) = cᵀx +dᵀy the best possible Lipschitz
constant on R

n × R
m, that is, the Lipschitz modulus

sup
(x1,y1)	=(x2,y2)

|f (x1, y1) − f (x2, y2)|
‖(x1, y1) − (x2, y2)‖ ,

is easily seen to coincide with the dual norm of (c, d), so that we may set

Lf := ‖(c, d)‖� := max{cᵀx + dᵀy | ‖(x, y)‖ ≤ 1}.
Moreover, we may choose

L
f∞ := ‖d‖�∞ = ‖d‖1.

Lemma 1 Let Assumptions 1 and 2 hold, let (̂x�, ŷ�) denote any optimal point of M̂INLP ,
and let (x̌s , y̌s) denote any rounding of any optimal point (xs, ys) of P s . Then the value
v̌s = f (x̌s, y̌s) satisfies

0 ≤ v̌s − v ≤ L
f∞/2 + Lf dist

(

(̂x�, ŷ�), T −)

.

Proof As above, the first inequality stems from the feasibility of (x̌s , y̌s) for MINLP . For
the proof of the second inequality note that, with any projection (xπ , yπ ) of (̂x�, ŷ�) onto
the set T − with respect to ‖ · ‖, the upper bound v̌s − v̂ of v̌s − v from (5) may be written as

v̌s − v̂ = (

f (x̌s, y̌s) − f (xs, ys)
)+ (

f (xs, ys) − f (xπ , yπ )
)+ (

f (xπ , yπ ) − f (̂x�, ŷ�)
)

.

Due to x̌s = xs , the first term satisfies

f (x̌s, y̌s) − f (xs, ys) ≤ L
f∞‖(xs, y̌s) − (xs, ys)‖∞ = L

f∞‖y̌s − ys‖∞ ≤ L
f∞/2.

Since (xs, ys) is an optimal point of P s , while (xπ , yπ ) is a feasible point, for the second
term we obtain

f (xs, ys) − f (xπ , yπ ) ≤ 0.

Finally, as the distance is the optimal value of the corresponding projection problem, the
third term can be bounded by

f (xπ , yπ ) − f (̂x�, ŷ�) ≤ Lf ‖(xπ , yπ ) − (̂x�, ŷ�)‖ = Lf dist
(

(̂x�, ŷ�), T −)

,

and the assertion is shown.

It remains to bound the expression dist((̂x�, ŷ�), T −) from the upper bound in Lemma 1
in terms of the problem data. To this end, we will employ a global error bound for the system
of inequalities describing T −. For the statement of this global error bound we construct the
penalty function

‖(Ax + By − b + ‖β‖1/2)+, (g(x, y) + L∞/2)+‖∞
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of the set T − where a+ := (max{0, a1}, . . . ,max{0, aN })ᵀ denotes the componentwise
positive-part operator for vectors a ∈ R

N . A global error bound relates the geometric dis-
tance to the (consistent) set T − with the evaluation of its penalty function by stating the
existence of a constant γ > 0 such that for all (̂x, ŷ) ∈ R

n × R
m we have

dist
(

(̂x, ŷ), T −) ≤ γ ‖(Ax̂ + Bŷ − b + ‖β‖1/2)+, (g(̂x, ŷ) + L∞/2)+‖∞. (7)

As Hoffman showed the existence of such a bound for any linear system of inequalities in
his seminal work [9], γ is also called a Hoffman constant, and the error bound (7) is known
as a Hoffman error bound. Short proofs of this result for the polyhedral case can be found in
[7, 11]. For global error bounds of broader problem classes see, for example, [1, 6, 12–18,
24], and [2, 3, 22] for surveys. These references also contain sufficient conditions for the
existence of global error bounds. To cite an early result for the nonlinear case from [24], if
for convex functions gi , i ∈ I , the set T − is bounded and satisfies Slater’s condition, then a
global error bound holds.

The next result simplifies the error bound (7) for points (̂x, ŷ) ∈ ̂M . It was used anal-
ogously in [26, Theorem 3.3] and follows from the subadditivity of the max operator, the
monotonicity of the �∞-norm, as well as (Ax̂ + Bŷ − b)+ = 0 and g+(̂x, ŷ) = 0 for any
(̂x, ŷ) ∈ ̂M . Furthermore, we use that the appearing term ‖(‖β‖1)‖∞ coincides with the
maximal absolute row sum ‖B‖∞ of the matrix B.

Lemma 2 Let Assumption 1 hold, and let the error bound (7) hold with some γ > 0. Then
all (̂x, ŷ) ∈ ̂M satisfy

dist
(

(̂x, ŷ), T −) ≤ γ max{‖B‖∞, ‖L∞‖∞}/2.

The combination of Lemma 1 and Lemma 2 yields the main result of this section.

Theorem 3 Let Assumptions 1 and 2 hold, and let the error bound (7) hold with some
γ > 0. Then the objective value v̌s of any rounding of any optimal point of P s satisfies

0 ≤ v̌s − v ≤
(

L
f∞ + Lf γ max{‖B‖∞, ‖L∞‖∞}

)

/2.

Example 2 For a mixed-integer linear problem MILP the nonlinear function g is absent
(i.e., q = 0), and f has the form from Example 1. Furthermore, from [9] it is known that
for polyhedral constraints a global error bound always holds so that this assumption may be
dropped from Theorem 3. In view of Example 1 this results in the a-priori bound

0 ≤ v̌s − v ≤ (‖d‖1 + ‖(c, d)‖�γ ‖B‖∞
)

/2.

The result of Theorem 3 remains valid for any enlargement vector ρ ∈ R with minor
modifications. In fact, if γ satisfies the error bound estimate

dist
(

(̂x, ŷ), T −
ρ

) ≤ γ ‖(Ax̂ + Bŷ − b − σ + ‖β‖1/2)+, (g(̂x, ŷ) − τ + L∞/2)+‖∞

instead of (7), then also the objective value v̌s
ρ of any rounding of any optimal point of P s

ρ

satisfies the estimates from Theorem 3. We remark that for the proof of this result Lemma 1
needs to consider an optimal point (̂x�

ρ, ŷ�
ρ) of M̂INLP ρ .
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4 The Effect of the Integer Grid Fineness on the Objective Value

As mentioned before, we are particularly interested in a-priori bounds which explain the
behavior of (v̌s

ρ − v)/|v| for different degrees of integer grid fineness in MINLP . To
motivate our subsequent model for this effect, let us start by considering the purely integer
linear problem

ILPt : min
y∈Zm

dᵀy s.t. By ≤ b + t b̄

with a parameter t > 0 and a fixed vector b̄ > 0 which perturb the right-hand side vector b.
Increasing values of t increase the number of feasible integer points and, in relation to the
relaxed feasible sets ̂M(t), the grid becomes finer.

For increasing values of t we wish to analyze the quality of the feasible point generated
by FRA-SOR for ILPt , that is, the deviation of its objective value v̌s

t from vt . However,
since also |vt | increases with t , instead of the absolute deviation we consider the behavior
of the relative deviation (v̌s

t − vt )/|vt |.
To make such an analysis also applicable to nonlinear constraints, let us focus on the

relative effect of the integer grid fineness on the objective value. This may be modeled by a
parameter h > 0 which scales the variables (x, y) to (hx, hy) and leads to the parametric
problem

MINLPh : min
(x,y)∈Rn×Zm

f (hx, hy) s.t. g(hx, hy) ≤ 0, (hx, hy) ∈ D

with optimal value vh. The above effect for increasing t is now translated to decreasing
h > 0 and, due to hy ∈ hZm, for h ↘ 0 the grid hZm indeed becomes finer. A similar
construction is mentioned in [25], but there it is neither used explicitly, nor does [25] provide
bounds on the objective values of feasible points.

To apply the results on a-priori bounds from Section 3 to MINLPh, for simplicity let
us again ignore enlargement constructions, and let us define the functions f h(x, y) :=
f (hx, hy) and gh(x, y) := g(hx, hy) as well as the matrices Ah := hA and Bh := hB. We
may then rewrite MINLPh as

min
(x,y)∈Rn×Zm

f h(x, y) s.t. Ahx + Bhy ≤ b, gh(x, y) ≤ 0,

and the application of FRA-SOR consists in rounding an optimal point (̂xs
h, ŷ

s
h) of

P s
h : min

(x,y)∈Rn×Rm
f h(x, y) s.t. Ahx + Bhy + ‖βh‖1/2 ≤ b, gh(x, y) + Lh∞/2 ≤ 0,

to (x̌s
h, y̌

s
h) with objective value v̌s

h := f h(x̌s
h, y̌

s
h). Here, the vector ‖βh‖1 coincides with

h‖β‖1, and for each i ∈ I the i-th entry of the vector Lh∞ denotes the Lipschitz constant of
gh

i on Rn ×R
m with respect to y and uniformly in x. It is easily seen to coincide with hLi∞,

if the functions gi , i ∈ I , satisfy Assumption 1 with Lipschitz constants Li∞, i ∈ I .
In this notation, the above mentioned empirical observation from [19, 20] is that the

relative bound (v̌s
h − vh)/|vh| seems to tend to zero for h ↘ 0. In the remainder of this

section we shall prove this conjecture and quantify the corresponding rate of decrease.
In the subsequent result we will use that the optimal value v̂ of the continuously relaxed

problem M̂INLP h does not depend on h, since in the relaxed problem the substitution of
(hx, hy) by (x, y) is just a (scaling) transformation of coordinates. We will also assume v̂ >

0, which may always be attained by adding a suitable constant to the objective function f .
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Furthermore, we shall use the set

˜T −
h := {(x, y) ∈ R

n × R
m | Ax + By + h‖β‖1/2 ≤ b, g(x, y) + hL∞/2 ≤ 0}

and assume that it satisfies the error bound

dist
(

(̂x, ŷ), ˜T −
h

) ≤ γh‖(Ax̂ + Bŷ − b + h‖β‖1/2)+, (g(̂x, ŷ) + hL∞/2)+‖∞ (8)

for all (̂x, ŷ) ∈ R
n × R

m with the Hoffman constant γh > 0.

Lemma 3 Let v̂ > 0, let f and g satisfy Assumptions 2 and 1, respectively, for h > 0 let
˜T −
h be nonempty, and let the error bound (8) hold with some γh > 0. Then the objective

value v̌s
h of any rounding of any optimal point of P s

h satisfies

0 ≤ v̌s
h − vh

vh

≤ h
L

f∞ + Lf γh max{‖B‖∞, ‖L∞‖∞}
2̂v

. (9)

Proof Since the denominator vh is bounded below by the optimal value v̂ > 0 of the
continuous relaxation, we obtain

0 ≤ v̌s
h − vh

vh

≤ v̌s
h − vh

v̂
.

Moreover, the numerator v̌s
h − vh may be bounded above by applying Theorem 3 to the

problem MINLPh. In fact, it is easy to see that Assumption 2 for f with the Lipschitz
constant Lf implies that f h satisfies Assumption 2 with the Lipschitz constant hLf . Anal-
ogously, hL

f∞ and hLi∞ are Lipschitz constants with respect to y uniformly in x for f h and
gh

i , i ∈ I , respectively, with respect to the �∞-norm.
Since a point (x, y) lies in

T −
h := {(x, y) ∈ R

n × R
m | Ahx + Bhy + h‖β‖1/2 ≤ b, gh(x, y) + hL∞/2 ≤ 0}

= {(x, y) ∈ R
n × R

m | A(hx) + B(hy) + h‖β‖1/2 ≤ b, g(hx, hy) + hL∞/2 ≤ 0}
if and only if (ξ, η) := (hx, hy) lies in ˜T −

h , the assumption ˜T −
h 	= ∅ implies that also T −

h is
nonempty. Furthermore, as an error bound for the set T −

h we obtain for all (̂x, ŷ) ∈ R
n×R

m

dist
(

(̂x, ŷ), T −
h

) = inf
(x,y)∈T −

h

‖(x, y) − (̂x, ŷ)‖ = inf
(hx,hy)∈˜T −

h

‖(x, y) − (̂x, ŷ)‖

= inf
(ξ,η)∈˜T −

h

‖(ξ, η)/h − (̂x, ŷ)‖ = inf
(ξ,η)∈˜T −

h

‖(ξ, η) − (hx̂, hŷ)‖ /h

= dist
(

(hx̂, hŷ), ˜T −
h

)

/h

≤ γh‖(A(hx̂) + B(hŷ) − b + h‖β‖1/2)+, (g(hx̂, hŷ) + hL∞/2)+‖∞/h

= γh‖(Ahx̂ + Bhŷ − b + h‖β‖1/2)+, (gh(̂x, ŷ) + hL∞/2)+‖∞/h,

that is, γh/h serves as a Hoffman constant for the system of inequalities describing T −
h .

Theorem 3 thus yields

v̌s
h − vh ≤

(

(hL
f∞) + (hLf )(γh/h) max{h‖B‖∞, ‖(hL∞)‖∞}

)

/2

= h
(

(L
f∞) + Lf γh max{‖B‖∞, ‖L∞‖∞}

)

/2.

The combination of the estimates for the numerator and the denominator now yields the
assertion.
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Theorem 4 Let v̂ > 0, let f and g satisfy Assumptions 2 and 1, respectively, let the func-
tions gi , i ∈ I , be convex on Rn ×R

m, and let the set ̂M = {(x, y) ∈ R
n ×R

m | Ax +By ≤
b, g(x, y) ≤ 0} be bounded and satisfy Slater’s condition. Then for all sufficiently small
h > 0 the set T −

h is nonempty, the error bound (8) holds with some γh > 0, the relative
bound (v̌s

h − vh)/vh satisfies the relations (9), and it tends to zero at least linearly with
h ↘ 0.

Proof By Slater’s condition for the set ̂M there is a point (x̄, ȳ) with Ax̄ + Bȳ < b and
g(x̄, ȳ) < 0. Then for all sufficiently small h > 0 the point (x̄, ȳ) is also a Slater point
of ˜T −

h . Firstly, this implies that also T −
h is nonempty for these h. Secondly, since ˜T −

h is
bounded as a subset of the bounded set ̂M , by [24] the error bound (8) holds with some
γh > 0. The relations (9) thus follow from Lemma 3. Finally, the linear decrease of the
relative bounds with h ↘ 0 is due to the fact that the Hoffman constants γh remain bounded
for all sufficiently small h > 0. This is shown in [21] for convex problems under mild
assumptions and may be applied to the present setting along the lines of the proof of [26,
Corollary 3.6].

We point out that the assumptions of Theorem 4 may be significantly relaxed in the
MILP case from Example 2. Then not only Assumptions 2 and 1 hold with Lf = ‖(c, d)‖�

and L∞ = ‖β‖1 as well as L
f∞ = ‖d‖1, but from [9] it is also known that for polyhedral

constraints the error bound (8) is satisfied without further assumptions, and that the cor-
responding Hoffman constant γ may even be chosen independently of the right-hand side
vector and, thus, in our case independently of h. Altogether, this shows the following result.

Corollary 1 For an MILP let v̂ > 0, and let the set ̂M = {(x, y) ∈ R
n×R

m | Ax+By ≤ b}
satisfy Slater’s condition. Then for all sufficiently small h > 0 the set T −

h is nonempty,
the error bound (8) holds with some γ > 0, the relative bound (v̌s

h − vh)/vh satisfies the
relations

0 ≤ v̌s
h − vh

vh

≤ h
‖d‖1 + ‖(c, d)‖�γ ‖B‖∞

2̂v

and, thus, it tends to zero at least linearly with h ↘ 0.

5 An Application to Bounded Knapsack Problems

The following computational study comprises results for the bounded knapsack problem
which was introduced in [5] and is known to be an NP-hard MILP (cf. [10, pp. 483–491]). In
its original formulation, which is also called the 0-1 knapsack problem, all decision variables
are binary. The bounded knapsack problem (BKP) is a generalization of the 0-1 knapsack
problemwhere it is possible to pick more than one piece per item, that is, the integer decision
variables may not be binary. A possible numerical approach to bounded knapsack problems
is to transform them into equivalent 0-1 knapsack problems for which solution techniques
exist that perform very well in practical applications. In contrast to this approach we exploit
granularity of the BKP and obtain very good feasible points by applying FRA-SOR to test
instances of the bounded knapsack problem.

In the bounded knapsack problem we have m ∈ N item types and denote the value and
weight of item j ∈ {1, . . . , m} by vj and wj , respectively. Further, there are at most bj ∈ N

units of item j available and the capacity of the knapsack is given by c > 0. By maximizing
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Table 1 Relative optimality gap of FRA-SOR for different choices of U and m

5 10 100 1000 10000

100 4.35e-01 2.27e-01 2.43e-02 2.45e-03 2.45e-04

1000 4.62e-01 2.50e-01 2.70e-02 2.72e-03 2.72e-04

10000 4.46e-01 2.40e-01 2.58e-02 2.60e-03 2.60e-04

100000 4.48e-01 2.41e-01 2.60e-02 2.62e-03 2.62e-04

1000000 4.47e-01 2.40e-01 2.59e-02 2.61e-03 2.61e-04

the total value of all items in the knapsack we arrive at the purely integer optimization
problem

BKP : max
y∈Zm

vᵀy s.t. wᵀy ≤ c, 0 ≤ y ≤ b.

In order to obtain hard test examples of the BKP we create so-called strongly correlated
instances (cf. [23] for an analogous treatment in the context of 0-1 knapsack problems),
that is, the weights wj are uniformly distributed in the interval [1, 10000] and we have
vj = wj + 1000. Furthermore, bj , j ∈ {1, . . . , m}, is uniformly distributed within the set
{0, . . . , U} for an integer upper bound U ∈ N and, in order to avoid trivial solutions, we set
c = δwᵀb for some δ ∈ (0, 1).

Note that the integer grid fineness of the BKP is controlled by the randomly chosen data b

and w as well as δ ∈ (0, 1). The expected value of b is (U/2)e, where e denotes the all ones
vector. At least for a fixed vector of weights w the expected value of c then is δ(U/2)wᵀe.
For the expected test instances the parameter U thus plays the role of the parameter t from
the problem ILPt in Section 4 and controls the grid fineness.

According to (2) the inner parallel set of D = {y ∈ R
m | wᵀy ≤ c, 0 ≤ y ≤ b} is

T − = D− = {y ∈ R
m | wᵀy ≤ c − 1

2‖w‖1, − y ≤ − 1
2e, y ≤ b − 1

2e}.

Fig. 1 Relative optimality gap for m = 1000 and different choices of U

310



Bounds on the Objective Value of Feasible Roundings

Table 2 Computing time in seconds for FRA-SOR (left) and Gurobi (right) for different choices of U and m

5 10 100 1000 10000

100 0.015 0.016 0.002 0.031 0.001 0.000 0.001 0.000 0.002 0.000

1000 0.004 0.016 0.004 0.016 0.002 0.000 0.002 0.016 0.002 0.016

10000 0.045 0.141 0.035 0.125 0.024 0.125 0.051 0.125 0.028 0.125

100000 0.580 2.063 0.654 2.109 0.546 2.047 0.574 2.031 0.548 1.984

1000000 7.546 35.484 7.845 13.766 8.014 33.219 8.154 33.078 8.254 33.594

Using the enlargement technique from Section 2.3 with σ = (0, 1
2e,

1
2e) yields the enlarged

inner parallel set

T −
σ := {y ∈ R

m | wᵀy ≤ c − 1
2‖w‖1, 0 ≤ y ≤ b}.

We see that T −
σ is nonempty if and only if c − 1

2‖w‖1 ≥ 0 holds. For our specific choice of
c the latter is equivalent to

wᵀ(δb − 1
2e) ≥ 0.

In particular, T −
σ may be empty for small values of δ and bj , j ∈ {1, . . . , m}. In the remain-

der of this section we set δ = 1/3 and use different values of U ≥ 5. Then the expected
values of the terms δbj − 1/2, j = 1, . . . , m, exceed 1/3, so that the enlarged inner parallel
sets may be expected to be nonempty.

In fact, the enlarged inner parallel set T −
σ turns out to be nonempty in all created test

instances, so that all test problems are granular in the sense of Definition 1. In particular, no
further enlargement of the inner parallel set is necessary.

FRA-SOR is implemented in MATLAB R2016b and the arising optimization problem is
solved with Gurobi 7 [8], which we also use for a comparison. All tests are run on a personal
computer with two cores à 2.3 GHz and 8 GB RAM.

In Table 1 we consider the relative optimality gap (̂v − v̌s
σ )/̂v of FRA-SOR applied

to different instances of the BKP. The results seem to indicate that the optimality gap is
independent of the problem size m. However, we see a strong dependency of the optimality
gap on the upper bound U . This is caused by the fact that U controls the expected grid
fineness, which plays a crucial role in the error bound obtained for FRA-SOR.

Note that the error bound given in Example 2 actually bounds the absolute optimality
gap, and that this bound decreases linearly with finer grids. Thus, for the current setting this
result predicts a hyperbolic decrease of the relative optimality gap with increasing values of
U . This is confirmed by Fig. 1.

As mentioned above, solving the BKP to optimality is an NP-hard optimization problem.
Instead, for nonempty enlarged inner parallel sets the main effort of our feasible rounding
approach consists of solving a continuous linear optimization problem which can be done in
polynomial time. This fact is demonstrated in Table 2 and Fig. 2 where we see that especially
for the larger test instances FRA-SOR is able to find very good feasible points in reasonable
time. Their relative optimality gaps (cf. Table 1) are of order 10−3, that is, the additional
time that Gurobi needs to identify a global optimal point only yields a marginal benefit.
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Fig. 2 Computing time in seconds for an optimal point by Gurobi and a feasible point by FRA-SOR for
U = 1000 and different choices of m

6 Conclusions

This article assesses the quality of a point generated by a feasible rounding approach for
mixed-integer nonlinear optimization problems. To this end, its optimality gap is estimated
by a-posteriori as well as a-priori bounds, and the latter are shown to decrease at least
linearly with increasing integer grid fineness.

The bounded knapsack problem illustrates our findings computationally. Detailed numer-
ical results for the application of the feasible rounding approach to problems from the
MIPLIB and MINLPLib libraries, which motivated the current research, are reported in [19,
20].
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