7 research outputs found

    Generalized Species Sampling Priors with Latent Beta reinforcements

    Full text link
    Many popular Bayesian nonparametric priors can be characterized in terms of exchangeable species sampling sequences. However, in some applications, exchangeability may not be appropriate. We introduce a {novel and probabilistically coherent family of non-exchangeable species sampling sequences characterized by a tractable predictive probability function with weights driven by a sequence of independent Beta random variables. We compare their theoretical clustering properties with those of the Dirichlet Process and the two parameters Poisson-Dirichlet process. The proposed construction provides a complete characterization of the joint process, differently from existing work. We then propose the use of such process as prior distribution in a hierarchical Bayes modeling framework, and we describe a Markov Chain Monte Carlo sampler for posterior inference. We evaluate the performance of the prior and the robustness of the resulting inference in a simulation study, providing a comparison with popular Dirichlet Processes mixtures and Hidden Markov Models. Finally, we develop an application to the detection of chromosomal aberrations in breast cancer by leveraging array CGH data.Comment: For correspondence purposes, Edoardo M. Airoldi's email is [email protected]; Federico Bassetti's email is [email protected]; Michele Guindani's email is [email protected] ; Fabrizo Leisen's email is [email protected]. To appear in the Journal of the American Statistical Associatio

    Bayesian Nonparametric Inverse Reinforcement Learning

    Get PDF
    Inverse reinforcement learning (IRL) is the task of learning the reward function of a Markov Decision Process (MDP) given the transition function and a set of observed demonstrations in the form of state-action pairs. Current IRL algorithms attempt to find a single reward function which explains the entire observation set. In practice, this leads to a computationally-costly search over a large (typically infinite) space of complex reward functions. This paper proposes the notion that if the observations can be partitioned into smaller groups, a class of much simpler reward functions can be used to explain each group. The proposed method uses a Bayesian nonparametric mixture model to automatically partition the data and find a set of simple reward functions corresponding to each partition. The simple rewards are interpreted intuitively as subgoals, which can be used to predict actions or analyze which states are important to the demonstrator. Experimental results are given for simple examples showing comparable performance to other IRL algorithms in nominal situations. Moreover, the proposed method handles cyclic tasks (where the agent begins and ends in the same state) that would break existing algorithms without modification. Finally, the new algorithm has a fundamentally different structure than previous methods, making it more computationally efficient in a real-world learning scenario where the state space is large but the demonstration set is small

    Piecewise Approximate Bayesian Computation: fast inference for discretely observed Markov models using a factorised posterior distribution

    Get PDF
    Many modern statistical applications involve inference for complicated stochastic models for which the likelihood function is difficult or even impossible to calculate, and hence conventional likelihood-based inferential techniques cannot be used. In such settings, Bayesian inference can be performed using Approximate Bayesian Computation (ABC). However, in spite of many recent developments to ABC methodology, in many applications the computational cost of ABC necessitates the choice of summary statistics and tolerances that can potentially severely bias the estimate of the posterior. We propose a new “piecewise” ABC approach suitable for discretely observed Markov models that involves writing the posterior density of the parameters as a product of factors, each a function of only a subset of the data, and then using ABC within each factor. The approach has the advantage of side-stepping the need to choose a summary statistic and it enables a stringent tolerance to be set, making the posterior “less approximate”. We investigate two methods for estimating the posterior density based on ABC samples for each of the factors: the first is to use a Gaussian approximation for each factor, and the second is to use a kernel density estimate. Both methods have their merits. The Gaussian approximation is simple, fast, and probably adequate for many applications. On the other hand, using instead a kernel density estimate has the benefit of consistently estimating the true piecewise ABC posterior as the number of ABC samples tends to infinity. We illustrate the piecewise ABC approach with four examples; in each case, the approach offers fast and accurate inference

    Articulated body tracking using dynamic belief propagation

    No full text
    An efficient articulated body tracking algorithm is proposed in this paper. Due to the high dimensionality of human-body motion, current articulated tracking algorithms based on sampling [1], belief propagation (BP) [2], or non-parametric belief propagation (NBP) [3], are very slow. To accelerate the articulated tracking algorithm, we adapted belief propagation according to the dynamics of articulated human motion. The searching space is selected according to the prediction based on human motion dynamics and current body-configuration estimation. The searching space of the dynamic BP tracker is much smaller than the one of traditional BP tracker [2] and the dynamic BP need not the slow Gibbs sampler used in NBP [3–5]. Based on a graphical model similar to the pictorial structure [6] or loose-limbed model [3], the proposed efficient, dynamic BP is carried out to find the MAP of the body configuration. The experiments on tracking the body movement in meeting scenario show robustness and efficiency of the proposed algorithm
    corecore