36 research outputs found

    Amino acid residues in the non-structural protein 1 of porcine reproductive and respiratory syndrome virus involved in down-regulation of TNF-cx expression in vitro and attenuation in vivo

    Get PDF
    Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses tumor necrosis factor-alpha (TNF-α) production at both transcriptional and post-transcriptional levels by its non-structural proteins 1α and 1β (Nsp1α and Nsp1β). To identifY the amino acid residues responsible for this activity, we generated several alanine substitution mutants of Nsp1α and Nsp1β. Examination of the mutant proteins revealed that Nsp1α residues Gly90, Asn91 , Arg97, Argl 00 and Arg124 were necessary for TNF-α promoter suppression, whereas several amino acids spanning the entire Nsp1β ~ were found to be required for this activity. Two mutant viruses, with mutations at Nsp1α Gly90 or Nsp1β residues 70-74, generated from infectious cDNA clones, exhibited attenuated viral replication in vitro and TNF-α was found to be up regulated in infected macrophages. In infected pigs, the Nsp1β mutant virus was attenuated in growth. These studies provide insights into how PRRSV evades the effector mechanisms of innate immunity dUling infection

    Identification of amino acid residues important for anti-IFN activity of porcine reproductive and respiratory syndrome virus non-structural protein 1

    Get PDF
    The non-structural protein 1 (nsp1) of porcine reproductive and respiratory syndrome virus is partly responsible for inhibition of type I interferon (IFN) response by the infected host. By performing alanine-scanning mutagenesis, we have identified amino acid residues in nsp1α and nsp1β~ (the proteolytic products of nsp1) that when substituted with alanine(s) exhibited significant relief of IFNsuppression. A mutant virus (16-SA, in which residues 16-20 of nsp1β were substituted with alanines) encoding mutant nsp1β recovered from infectious cDNA clone was shown to be attenuated for growth in vitro and induced significantly higher amount of type I IFN transcripts in infected macrophages. In infected pigs, the 16-SA virus exhibited reduced growth at early times after infection but quickly regained wild type growth properties as a result of substitutions within the mutated sequences. The results indicate a strong selection pressure towards maintaining the IFN-inhibitory property of the virus for successful propagation in pigs

    An Original Hybrid Multilevel DC-AC Converter Using Single-Double Source Unit for Medium Voltage Applications:Hardware Implementation and Investigation

    Get PDF
    In this article, an original hybrid multilevel DC-AC converter configurations are proposed by using single-double source unit for medium voltage applications. The proposed topologies are derived by hybridization of single and double source units with polarity changer and cascaded with full-bridge converter for medium and high voltage applications. Two different hybrid topologies presented and each topology configured for both symmetric and asymmetric method. The proposed hybrid topologies compared with the conventional cascaded H-bridge converter (CHB), and the best topologies recommended for medium voltage applications. The comparison in terms of the number of switches, gate driver circuits, maximum blocking voltage by switches and total peak inverse voltages of switches presented. The proposed topologies require a small installation area and low cost. The validity of the proposed hybrid converter structures is verified by simulation using MATLAB/Simulink and hardware results. The simulation and hardware results show a good agreement with the theoretical approach

    Amino acid residues in the non-structural protein 1 of porcine reproductive and respiratory syndrome virus involved in down-regulation of TNF-cx expression in vitro and attenuation in vivo

    Get PDF
    Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses tumor necrosis factor-alpha (TNF-α) production at both transcriptional and post-transcriptional levels by its non-structural proteins 1α and 1β (Nsp1α and Nsp1β). To identifY the amino acid residues responsible for this activity, we generated several alanine substitution mutants of Nsp1α and Nsp1β. Examination of the mutant proteins revealed that Nsp1α residues Gly90, Asn91 , Arg97, Argl 00 and Arg124 were necessary for TNF-α promoter suppression, whereas several amino acids spanning the entire Nsp1β ~ were found to be required for this activity. Two mutant viruses, with mutations at Nsp1α Gly90 or Nsp1β residues 70-74, generated from infectious cDNA clones, exhibited attenuated viral replication in vitro and TNF-α was found to be up regulated in infected macrophages. In infected pigs, the Nsp1β mutant virus was attenuated in growth. These studies provide insights into how PRRSV evades the effector mechanisms of innate immunity dUling infection

    miR-27b*, an Oxidative Stress-Responsive microRNA Modulates Nuclear Factor-kB Pathway in RAW 264.7 Cells

    Get PDF
    Reactive oxygen species (ROS) produced in macrophages is critical for microbial killing, but they also take part in inflammation and antigen presentation functions. MicroRNAs (miRNAs) are endogenous regulators of gene expression, and they can control immune responses. To dissect the complex nature of ROS-mediated effects in macrophages, we sought to characterize miRNAs that are responsive to oxidative stress-induced with hydrogen peroxide (H2O2) in the mouse macrophage cell line, RAW 264.7. We have identified a set of unique miRNAs that are differentially expressed in response to H2O2. These include miR-27a*, miR-27b*, miR-29b*, miR-24-2*, and miR21*, all of which were downregulated except for miR-21*. By using luciferase reporter vector containing nuclear factor-kB (NF-kB) response elements, we demonstrate that overexpression of miR-27b* suppresses lipopolysaccharide-induced activation of NF-kB in RAW 264.7 cells. Our data suggest that macrophage functions can be regulated by oxidative stress-responsive miRNAs by modulating the NF-kB pathway

    Distribution and characterization of IL-10-secreting cells in lymphoid tissues of PCV2-infected pigs

    Get PDF
    Distribution and characterization of interlukin-10 (IL-10)-secreting cells in lymphoid tissues of pigs naturally infected with porcine circovirus type 2 (PCV2) were evaluated in accordance with PCV2 antigen detection. After screening a total of 56 pigs showing the symptoms of postweaning multisystemic wasting syndrome (PMWS), 15 pigs were PCV2 positive and 5 pigs, which showed stronger positive signals over multiples tissues were further investigated. This study showed that in PCV2-infected lymphoid tissues, particularly mandibular lymph node, spleen and tonsil, IL-10 expression was mainly localized in T-cell rich areas but rarely in B cell rich areas. IL-10 was highly expressed in bystander cells but rarely in PCV2-infected cells. Elevated IL-10 expression was predominantly associated with T cells, but rarely with B cells or with macrophages. The results of this study provide evidence for the role of IL-10 in chronic PCV2 infection and its relation to PCV2 antigen in affected tissues. Constantly elevated levels of IL-10 lead to immunosuppression in persistent and chronic viral infections. The increased IL-10 expression observed in PCV2 infection in this study suggests that IL-10-mediated immunosuppression may play an important role in the pathogenesis and maintenance of naturally occurring PCV2 infection
    corecore