2,574 research outputs found

    Static and dynamic force/moment measurements in the Eidetics water tunnel

    Get PDF
    Water tunnels have been utilized in one form or another to explore fluid mechanics and aerodynamics phenomena since the days of Leonardo da Vinci. Water tunnel testing is attractive because of the relatively low cost and quick turn-around time to perform flow visualization experiments and evaluate the results. The principal limitation of a water tunnel is that the low flow speed, which provides for detailed visualization, also results in very small hydrodynamic (aerodynamic) forces on the model, which, in the past, have proven to be difficult to measure accurately. However, the advent of semi-conductor strain gage technology and devices associated with data acquisition such as low-noise amplifiers, electronic filters, and digital recording have made accurate measurements of very low strain levels feasible. The principal objective of this research effort was to develop a multi-component strain gage balance to measure forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models

    Development of a 5-Component Balance for Water Tunnel Applications

    Get PDF
    The principal objective of this research/development effort was to develop a multi-component strain gage balance to measure both static and dynamic forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 90 grams or 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models. The five-component balance was calibrated and demonstrated linearity in the responses of the primary components to applied loads, very low interactions between the sections and no hysteresis. Static experiments were conducted in the Eidetics water tunnel with delta wings and F/A-18 models. The data were compared to forces and moments from wind tunnel tests of the same or similar configurations. The comparison showed very good agreement, providing confidence that loads can be measured accurately in the water tunnel with a relatively simple multi-component internal balance. The success of the static experiments encouraged the use of the balance for dynamic experiments. Among the advantages of conducting dynamic tests in a water tunnel are less demanding motion and data acquisition rates than in a wind tunnel test (because of the low-speed flow) and the capability of performing flow visualization and force/moment (F/M) measurements simultaneously with relative simplicity. This capability of simultaneous flow visualization and for F/M measurements proved extremely useful to explain the results obtained during these dynamic tests. In general, the development of this balance should encourage the use of water tunnels for a wider range of quantitative and qualitative experiments, especially during the preliminary phase of aircraft design

    Silver-Copper Oxide Heteronanostructures for the Plasmonic-Enhanced Photocatalytic Oxidation of n-Hexane in the Visible-NIR Range

    Get PDF
    Volatile organic compounds (VOCs) are recognized as hazardous contributors to air pollution, precursors of multiple secondary byproducts, troposphere aerosols, and recognized contributors to respiratory and cancer-related issues in highly populated areas. Moreover, VOCs present in indoor environments represent a challenging issue that need to be addressed due to its increasing presence in nowadays society. Catalytic oxidation by noble metals represents the most effective but costly solution. The use of photocatalytic oxidation has become one of the most explored alternatives given the green and sustainable advantages of using solar light or low-consumption light emitting devices. Herein, we have tried to address the shortcomings of the most studied photocatalytic systems based on titania (TiO2) with limited response in the UV-range or alternatively the high recombination rates detected in other transition metal-based oxide systems. We have developed a silver-copper oxide heteronanostructure able to combine the plasmonic-enhanced properties of Ag nanostructures with the visible-light driven photoresponse of CuO nanoarchitectures. The entangled Ag-CuO heteronanostructure exhibits a broad absorption towards the visible-near infrared (NIR) range and achieves total photo-oxidation of n-hexane under irradiation with different light-emitting diodes (LEDs) specific wavelengths at temperatures below 180 °C and outperforming its thermal catalytic response or its silver-free CuO illuminated counterpart

    A Study of the Formal Architectural-Sculptural Characteristics of El Tajin

    Get PDF
    El Tajín was an ancient metropolis in which rituals such as the Mesoamerican ball game were carried out, later to be recorded in the sculptural bas-reliefs of its architecture. The study of its morphologies is the recognition of the ways in which an ancient civilization is expressed, thus contributing to the characterization of a culture whose past belongs to World Heritage. This paper proposes a case-sample analysis of the bas-reliefs in the South Ballcourt based on reticular geometry and fractal dimension analysis. It was found that the geometry of the RA (golden rectangle), RR2 and RR3 are prevalent, in addition to the identification of iconographic naturalist and symbolic elements; from the box-counting fractal dimension, it was found that the elements, though of different sizes or composition, show similar complexities, with a value of around 1.7

    F/A-18 forebody vortex control. Volume 1: Static tests

    Get PDF
    A wind tunnel test was conducted on a six percent model of the F/A-18 at the NASA Ames 7 X 10-Foot Low Speed Wind Tunnel. The primary objective of the test was to evaluate several forebody vortex control configurations at high angles of attack in order to determine the most effective method of obtaining well behaved yawing moments, in preparation for the rotary balance test. Both mechanical and pneumatic systems were tested. Single and dual rotating nose tip strakes and a vertical nose strake were tested at different sizes and deflections. A series of jet blowing configurations were located at various fuselage stations, azimuth angles, and pointing angles ranging from straight aft to 60 deg canted inboard. Slot blowing was investigated for several slot lengths and fuselage stations. The effect of blowing rate was tested for both of these pneumatic systems. The most effective configurations were then further tested with a variation of both sideslip angle and Reynolds number over a range of angles of attack from 0 to 60 deg. It was found that a very robust system can be developed that provides yawing moments at angles of attack up to 60 deg that significantly exceeds that available from 30 deg of rudder deflection (F/A-18 maximum) at 0 deg angle of attack

    Aerodynamic control of NASP-type vehicles through Vortex manipulation. Volume 2: Static wind tunnel tests

    Get PDF
    Forebody Vortex Control (FVC) was explored in this research program for potential application to a NASP-type configuration. Wind tunnel tests were conducted to evaluate a number of jet blowing schemes. The configuration tested has a slender forebody and a 78 deg swept delta wing. Blowing jets were implemented on the leeward side of the forebody with small circular tubes tangential to the surface that could be directed aft, forward, or at angles in between. The effects of blowing are observed primarily in the yawing and rolling moments and are highly dependent on the jet configuration and the angle of attack. Results show that the baseline flow field, without blowing activated, is quite sensitive to the geometry differences of the various protruding jets, as well as being sensitive to the blowing, particularly in the angle of attack range where the forebody vortices are naturally asymmetric. The time lag of the flow field response to the initiation of blowing was also measured. The time response was very short, on the order of the time required for the flow disturbance to travel the distance from the nozzle to the specific airframe location of interest at the free stream velocity. Overall, results indicate that sizable yawing and rolling moments can be induced with modest blowing levels. However, direct application of this technique on a very slender forebody would require thorough wind tunnel testing to optimize the jet location and configuration

    Aerodynamic control of NASP-type vehicles through vortex manipulation, volume 4

    Get PDF
    Forebody Vortex Control (FVC) is an emerging technology that has received widespread and concentrated attention by many researchers for application on fighter aircraft to enhance aerodynamic controllability at high angles of attack. This research explores potential application of FVC to a NASP-type configuration. The configuration investigated is characterized by a slender, circular cross-section forebody and a 78 deg swept delta wing. A man-in-the-loop, six-degress-of-freedom, high-fidelity simulation was developed that demonstrates the implementation and advantages of pneumatic forebody vortex control. Static wind tunnel tests were used as the basis for the aerodynamic characteristics modeled in the simulation. Dynamic free-to-roll wind tunnel tests were analyzed and the wing rock motion investigated. A non-linear model of the dynamic effects of the bare airframe and the forebody vortex control system were developed that closely represented the observed behavior. Multiple state-of-the-art digital flight control systems were developed that included different utilizations of pneumatic vortex control. These were evaluated through manned simulation. Design parameters for a pneumatic forebody vortex control system were based on data collected regarding the use of blowing and the mass flow required during realistic flight maneuvers

    F/A-18 forebody vortex control. Volume 2: Rotary-balance tests

    Get PDF
    A rotary-balance wind tunnel test was conducted on a six percent model of the F/A-18 at the NASA Ames 7 X 10-Foot Low Speed Wind Tunnel. The data reduction was specially written for the test in National Instruments' LabVIEW. The data acquisition, reduction and analysis was performed with a Macintosh computer. The primary objective of the test was to evaluate the effectiveness of several forebody vortex control configurations in a rotary flow field. The devices that were found to be the most effective during the static tests (Volume 1) were investigated and included both mechanical and pneumatic configurations. The mechanical systems evaluated were small, single and dual, rotating nose tip strakes and a vertical nose strake. The jet blowing configuration used nozzles canted inboard 60 degrees. A two segment tangential slot was also evaluated. The different techniques were evaluated at angles of attack of 30 degrees, 45 degrees, 51 degrees, and 60 degrees. Sideslip and Reynolds number were varied for some of the configurations. All of the techniques proved to be effective in the rotating flow field. The vertical nose strake had the largest 'envelope' of effectiveness. Forebody vortex control provides large, robust yawing moments at medium to high angles of attack, even during combat maneuvers such as loaded roll

    Aerodynamic control of NASP-type vehicles through Vortex manipulation. Volume 1: Static water tunnel tests

    Get PDF
    Water tunnel tests were conducted on a NASP-type configuration to evaluate different pneumatic Forebody Vortex Control (FVC) methods. Flow visualization and yawing moment measurements were performed at angles of attack from 0 deg to 30 deg. The pneumatic techniques tested included jet and slot blowing. In general, blowing can be used efficiently to manipulate the forebody vortices at angles of attack greater than 20 deg. These vortices are naturally symmetric up to alpha = 25 deg and asymmetric between 25 deg and 30 deg angle of attack. Results indicate that tangential aft jet blowing is the most promising method for this configuration. Aft jet blowing produces a yawing moment towards the blowing side and the trends with blowing rate are well behaved. The size of the nozzle is not the dominant factor in the blowing process; the change in the blowing 'momentum,' i.e., the product of the mass flow rate and the velocity of the jet, appears to be the important parameter in the water tunnel (incompressible and unchoked flow at the nozzle exit). Forward jet blowing is very unpredictable and sensitive to mass flow rate changes. Slot blowing (with the exception of very low blowing rates) acts as a flow 'separator'; it promotes early separation on the blow side, producing a yawing moment toward the non-blowing side for the C(sub mu) range investigated

    Design of a Segmentation and Classification System for Seed Detection Based on Pixel Intensity Thresholds and Convolutional Neural Networks

    Get PDF
    Due to the computational power and memory of modern computers, computer vision techniques and neural networks can be used to develop a visual inspection system of agricultural products to satisfy product quality requirements. This chapter employs artificial vision techniques to classify seeds in RGB images. As a first step, an algorithm based on pixel intensity threshold is developed to detect and classify a set of different seed types, such as rice, beans, and lentils. Then, the information inferred by this algorithm is exploited to develop a neural network model, which successfully achieves learning classification and detection tasks through a semantic-segmentation scheme. The applicability and satisfactory performance of the proposed algorithms are illustrated by testing with real images, achieving an average accuracy of 92% in the selected set of classes. The experimental results verify that both algorithms can directly detect and classify the proposed set of seeds in input RGB images. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG
    • …
    corecore