70,059 research outputs found

    On certain 5-manifolds with fundamental group of order 2

    Get PDF

    Online Spatio-Temporal Gaussian Process Experts with Application to Tactile Classification

    No full text

    The Relation between Solar Eruption Topologies and Observed Flare Features I: Flare Ribbons

    Full text link
    In this paper we present a topological magnetic field investigation of seven two-ribbon flares in sigmoidal active regions observed with Hinode, STEREO, and SDO. We first derive the 3D coronal magnetic field structure of all regions using marginally unstable 3D coronal magnetic field models created with the flux rope insertion method. The unstable models have been shown to be a good model of the flaring magnetic field configurations. Regions are selected based on their pre-flare configurations along with the appearance and observational coverage of flare ribbons, and the model is constrained using pre-flare features observed in extreme ultraviolet and X-ray passbands. We perform a topology analysis of the models by computing the squashing factor, Q, in order to determine the locations of prominent quasi-separatrix layers (QSLs). QSLs from these maps are compared to flare ribbons at their full extents. We show that in all cases the straight segments of the two J-shaped ribbons are matched very well by the flux-rope-related QSLs, and the matches to the hooked segments are less consistent but still good for most cases. In addition, we show that these QSLs overlay ridges in the electric current density maps. This study is the largest sample of regions with QSLs derived from 3D coronal magnetic field models, and it shows that the magnetofrictional modeling technique that we employ gives a very good representation of flaring regions, with the power to predict flare ribbon locations in the event of a flare following the time of the model

    Spin-Wave and Electromagnon Dispersions in Multiferroic MnWO4 as Observed by Neutron Spectroscopy: Isotropic Heisenberg Exchange versus Anisotropic Dzyaloshinskii-Moriya Interaction

    Get PDF
    High resolution inelastic neutron scattering reveals that the elementary magnetic excitations in multiferroic MnWO4 consist of low energy dispersive electromagnons in addition to the well-known spin-wave excitations. The latter can well be modeled by a Heisenberg Hamiltonian with magnetic exchange coupling extending to the 12th nearest neighbor. They exhibit a spin-wave gap of 0.61(1) meV. Two electromagnon branches appear at lower energies of 0.07(1) meV and 0.45(1) meV at the zone center. They reflect the dynamic magnetoelectric coupling and persist in both, the collinear magnetic and paraelectric AF1 phase, and the spin spiral ferroelectric AF2 phase. These excitations are associated with the Dzyaloshinskii-Moriya exchange interaction, which is significant due to the rather large spin-orbit coupling.Comment: 8 pages, 6 figures, accepted for publication in Physical Review

    Magnetic structure of EuFe2As2 determined by single crystal neutron diffraction

    Get PDF
    Among various parent compounds of iron pnictide superconductors, EuFe2As2 stands out due to the presence of both spin density wave of Fe and antiferromagnetic ordering (AFM) of the localized Eu2+ moment. Single crystal neutron diffraction studies have been carried out to determine the magnetic structure of this compound and to investigate the coupling of two magnetic sublattices. Long range AFM ordering of Fe and Eu spins was observed below 190 K and 19 K, respectively. The ordering of Fe2+ moments is associated with the wave vector k = (1,0,1) and it takes place at the same temperature as the tetragonal to orthorhombic structural phase transition, which indicates the strong coupling between structural and magnetic components. The ordering of Eu moment is associated with the wave vector k = (0,0,1). While both Fe and Eu spins are aligned along the long a axis as experimentally determined, our studies suggest a weak coupling between the Fe and Eu magnetism.Comment: 7 pages, 7 figure

    Phase diagram of Eu magnetic ordering in Sn-flux-grown Eu(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} single crystals

    Get PDF
    The magnetic ground state of the Eu2+^{2+} moments in a series of Eu(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} single crystals grown from the Sn flux has been investigated in detail by neutron diffraction measurements. Combined with the results from the macroscopic properties (resistivity, magnetic susceptibility and specific heat) measurements, a phase diagram describing how the Eu magnetic order evolves with Co doping in Eu(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} is established. The ground-state magnetic structure of the Eu2+^{2+} spins is found to develop from the A-type antiferromagnetic (AFM) order in the parent compound, via the A-type canted AFM structure with some net ferromagnetic (FM) moment component along the crystallographic c\mathit{c} direction at intermediate Co doping levels, finally to the pure FM order at relatively high Co doping levels. The ordering temperature of Eu declines linearly at first, reaches the minimum value of 16.5(2) K around x\mathit{x} = 0.100(4), and then reverses upwards with further Co doping. The doping-induced modification of the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu2+^{2+} moments, which is mediated by the conduction d\mathit{d} electrons on the (Fe,Co)As layers, as well as the change of the strength of the direct interaction between the Eu2+^{2+} and Fe2+^{2+} moments, might be responsible for the change of the magnetic ground state and the ordering temperature of the Eu sublattice. In addition, for Eu(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} single crystals with 0.10 \leqslant x\mathit{x} \leqslant 0.18, strong ferromagnetism from the Eu sublattice is well developed in the superconducting state, where a spontaneous vortex state is expected to account for the compromise between the two competing phenomena.Comment: 10 pages, 9 figure

    Synchrotron X-ray Diffraction Study of BaFe2As2 and CaFe2As2 at High Pressures up to 56 GPa: Ambient and Low-Temperatures Down to 33 K

    Get PDF
    We report high pressure powder synchrotron x-ray diffraction studies on MFe2As2 (M=Ba, Ca) over a range of temperatures and pressures up to about 56 GPa using a membrane diamond anvil cell. A phase transition to a collapsed tetragonal phase is observed in both compounds upon compression. However, at 300 (33) K in the Ba-compound the transition occurs at 26 (29) GPa, which is a much higher pressure than 1.7 (0.3) GPa at 300 (40) K in the Ca-compound, due to its larger volume. It is important to note that the transition in both compounds occurs when they are compressed to almost the same value of the unit cell volume and attain similar ct/at ratios. We also show that the FeAs4 tetrahedra are much less compressible and more distorted in the collapsed tetragonal phase than their nearly regular shape in the ambient pressure phase. We present a detailed analysis of the pressure dependence of the structures as well as equation of states in these important BaFe2As2 and CaFe2As2 compounds.Comment: 26 pages, 12 figure

    Low-Altitude Reconnection Inflow-Outflow Observations during a 2010 November 3 Solar Eruption

    Get PDF
    For a solar flare occurring on 2010 November 3, we present observations using several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion - an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from ~150-690 km/s with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high-temperature inflows occur simultaneously with a peak in the RHESSI thermal lightcurve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be 10^2 km/s with outflow speeds ranging from 10^2-10^3 km/s - indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops - presumably exiting the reconnection site.Comment: 31 pages, 13 figures, 1 table, Accepted to ApJ (expected publication ~July 2012
    corecore