1,051 research outputs found
Regulation of recombination at yeast nuclear pores controls repair and triplet repeat stability.
Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, we found that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery. This positioning is transient, occurs in late S phase, requires replication, and is associated with decreased subnuclear mobility of the locus. In contrast to persistent double-stranded breaks, expanded CAG repeats at the nuclear envelope associate with pores but not with the inner nuclear membrane protein Mps3. Relocation requires Nup84 and the Slx5/8 SUMO-dependent ubiquitin ligase but not Rad51, Mec1, or Tel1. Importantly, the presence of the Nup84 pore subcomplex and Slx5/8 suppresses CAG repeat fragility and instability. Repeat instability in nup84, slx5, or slx8 mutant cells arises through aberrant homologous recombination and is distinct from instability arising from the loss of ligase 4-dependent end-joining. Genetic and physical analysis of Rad52 sumoylation and binding at the CAG tract suggests that Slx5/8 targets sumoylated Rad52 for degradation at the pore to facilitate recovery from acute replication stress by promoting replication fork restart. We thereby confirmed that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process
Nutrition information and its influence on menu choice within higher education establishments
©Emerald Group Publishing Limited. Purpose - The purpose of this paper is to evaluate the influence of nutritional information on menu choices in a higher educational setting using a menu designed by the students themselves. Design/methodology/approach - Based on USDA healthy eating standards, a menu comprising seven healthy and seven unhealthy meal options were presented, once unlabeled as control (n = 214) and once labeled with healthy and non-healthy nutrient icons as an intervention test menu (n = 212). Findings - Findings demonstrate that despite a positive observed trend, there were no significant differences between healthy selection of labeled and unlabeled dishes (p = 0.16).Practical implications - Providing nutritional information in student cafeterias may be challenging but helpful. However, more strategies need to be developed with student input to provide nutrition data on menus in an informative, comprehensive, yet friendly way that encourages healthy eating in campus foodservices. The authors would like to thank Sodexho at Montclair State University for their full cooperation with this project. Competing interests: the author(s) declare that they have no competing interests. Authors’ contributions: authorship is based on substantive contributions to each of the following: conception and design of the study; generation and collection of data, analysis and/or interpretation; and drafting or revision of the manuscript and approval of the final version. Ethical approval: the Independent Ethical Review Board of Montclair State University gave full approval for this study. An information sheet and consent form was distributed to all respondents and signed and where informed consent implied through participation and completion of the questionnaire. Respondents were informed of their right to withdraw from the survey and that their identity would be protected. Data were stored safely for the duration of the study, for administrative purposes, after which handling of data sets will adhere to guidelines of the Data Protection Act 1998.Social implications – No labeling system or legislation can control choices made by individuals, so the responsibility for a healthy selection must always remain personal. However, consumers should have input on menus as they have a stake in the outcome of the products. Originality/value – This novel study tested a student-designed menu to assess whether user input can influence food choice
A Gaussian process and image registration based stitching method for high dynamic range measurement of precision surfaces
Optical instruments are widely used for precision surface measurement. However, the dynamic range of optical instruments, in terms of measurement area and resolution, is limited by the characteristics of the imaging and the detection systems. If a large area with a high resolution is required, multiple measurements need to be conducted and the resulting datasets needs to be stitched together. Traditional stitching methods use six degrees of freedom for the registration of the overlapped regions, which can result in high computational complexity. Moreover, measurement error increases with increasing measurement data. In this paper, a stitching method, based on a Gaussian process, image registration and edge intensity data fusion, is presented. Firstly, the stitched datasets are modelled by using a Gaussian process so as to determine the mean of each stitched tile. Secondly, the datasets are projected to a base plane. In this way, the three-dimensional datasets are transformed to two-dimensional (2D) images. The images are registered by using an (x, y) translation to simplify the complexity. By using a high precision linear stage that is integral to the measurement instrument, the rotational error becomes insignificant and the cumulative rotational error can be eliminated. The translational error can be compensated by the image registration process. The z direction registration is performed by a least-squares error algorithm and the (x, y, z) translational information is determined. Finally, the overlapped regions of the measurement datasets are fused together by the edge intensity data fusion method. As a result, a large measurement area with a high resolution is obtained. A simulated and an actual measurement with a coherence scanning interferometer have been conducted to verify the proposed method. The stitching result shows that the proposed method is technically feasible for large area surface measurement
Modeling water waves beyond perturbations
In this chapter, we illustrate the advantage of variational principles for
modeling water waves from an elementary practical viewpoint. The method is
based on a `relaxed' variational principle, i.e., on a Lagrangian involving as
many variables as possible, and imposing some suitable subordinate constraints.
This approach allows the construction of approximations without necessarily
relying on a small parameter. This is illustrated via simple examples, namely
the Serre equations in shallow water, a generalization of the Klein-Gordon
equation in deep water and how to unify these equations in arbitrary depth. The
chapter ends with a discussion and caution on how this approach should be used
in practice.Comment: 15 pages, 1 figure, 39 references. This document is a contributed
chapter to an upcoming volume to be published by Springer in Lecture Notes in
Physics Series. Other author's papers can be downloaded at
http://www.denys-dutykh.com
The infection of primary avian tracheal epithelial cells with infectious bronchitis virus
Here we introduce a culture system for the isolation, passaging and amplification of avian tracheal epithelial (ATE) cells. The ATE medium, which contains chicken embryo extract and fetal bovine serum, supports the growth of ciliated cells, goblet cells and basal cells from chicken tracheas on fibronectin- or matrigel-coated dishes. Non-epithelial cells make up less than 10% of the total population. We further show that ATE cells support the replication and spread of infectious bronchitis virus (IBV). Interestingly, immunocytostaining revealed that basal cells are resistant to IBV infection. We also demonstrate that glycosaminoglycan had no effect on infection of the cells by IBV. Taken together, these findings suggest that primary ATE cells provide a novel cell culture system for the amplification of IBV and the in vitro characterization of viral cytopathogenesis
D-concurrence bounds for pair coherent states
The pair coherent state is a state of a two-mode radiation field which is
known as a state with non-Gaussian wave function. In this paper, the upper and
lower bounds for D-concurrence (a new entanglement measure) have been studied
over this state and calculated.Comment: 11 page
C-reactive protein, sodium azide, and endothelial connexin43 gap junctions
We investigated the effect of C-reactive protein (CRP) and sodium azide (NaN(3)) on endothelial Cx43 gap junctions. Human aortic endothelial cells (HAEC) were treated with (a) detoxified CRP, (b) detoxified dialyzed CRP, (c) detoxified dialyzed CRP plus NaN(3), (d) NaN(3), or (e) dialyzed NaN(3). The concentration of CRP in all preparations was fixed to 25 mu g/ml and that of NaN(3) in the preparations of (c) to (e) was equivalent to that contained in the 25 mu g/ml CRP purchased commercially. The results showed that both the expression of Cx43 protein and gap junctional communication function post-48-h incubation were reduced and inhibited by the detoxified CRP, NaN(3), or detoxified dialyzed CRP plus NaN(3), but not by the detoxified dialyzed CRP or dialyzed NaN(3). Reverse transcription-polymerase chain reaction analysis of cells treated for 72 h also showed a pattern of transcriptional regulation essentially the same as that for the proteins. We concluded that CRP does not have a significant effect on Cx43 gap junctions of HAEC, but NaN(3) inhibited the viability of cells and downregulate their junctions
Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model
We investigate here the ability of a Green-Naghdi model to reproduce strongly
nonlinear and dispersive wave propagation. We test in particular the behavior
of the new hybrid finite-volume and finite-difference splitting approach
recently developed by the authors and collaborators on the challenging
benchmark of waves propagating over a submerged bar. Such a configuration
requires a model with very good dispersive properties, because of the
high-order harmonics generated by topography-induced nonlinear interactions. We
thus depart from the aforementioned work and choose to use a new Green-Naghdi
system with improved frequency dispersion characteristics. The absence of dry
areas also allows us to improve the treatment of the hyperbolic part of the
equations. This leads to very satisfying results for the demanding benchmarks
under consideration
High-throughput avian molecular sexing by SYBR green-based real-time PCR combined with melting curve analysis
<p>Abstract</p> <p>Background</p> <p>Combination of <it>CHD </it>(chromo-helicase-DNA binding protein)-specific polymerase chain reaction (PCR) with electrophoresis (PCR/electrophoresis) is the most common avian molecular sexing technique but it is lab-intensive and gel-required. Gender determination often fails when the difference in length between the PCR products of <it>CHD-Z </it>and <it>CHD-W </it>genes is too short to be resolved.</p> <p>Results</p> <p>Here, we are the first to introduce a PCR-melting curve analysis (PCR/MCA) to identify the gender of birds by genomic DNA, which is gel-free, quick, and inexpensive. <it>Spilornis cheela hoya </it>(<it>S. c. hoya</it>) and <it>Pycnonotus sinensis </it>(<it>P. sinensis</it>) were used to illustrate this novel molecular sexing technique. The difference in the length of <it>CHD </it>genes in <it>S. c. hoya </it>and <it>P. sinensis </it>is 13-, and 52-bp, respectively. Using Griffiths' P2/P8 primers, molecular sexing failed both in PCR/electrophoresis of <it>S. c. hoya </it>and in PCR/MCA of <it>S. c. hoya </it>and <it>P. sinensis</it>. In contrast, we redesigned sex-specific primers to yield 185- and 112-bp PCR products for the <it>CHD-Z </it>and <it>CHD-W </it>genes of <it>S. c. hoya</it>, respectively, using PCR/MCA. Using this specific primer set, at least 13 samples of <it>S. c. hoya </it>were examined simultaneously and the Tm peaks of <it>CHD-Z </it>and <it>CHD-W </it>PCR products were distinguished.</p> <p>Conclusion</p> <p>In this study, we introduced a high-throughput avian molecular sexing technique and successfully applied it to two species. This new method holds a great potential for use in high throughput sexing of other avian species, as well.</p
Topological (Sliced) Doping of a 3D Peierls System: Predicted Structure of Doped BaBiO3
At hole concentrations below x=0.4, Ba_(1-x)K_xBiO_3 is non-metallic. At x=0,
pure BaBiO3 is a Peierls insulator. Very dilute holes create bipolaronic point
defects in the Peierls order parameter. Here we find that the Rice-Sneddon
version of Peierls theory predicts that more concentrated holes should form
stacking faults (two-dimensional topological defects, called slices) in the
Peierls order parameter. However, the long-range Coulomb interaction, left out
of the Rice-Sneddon model, destabilizes slices in favor of point bipolarons at
low concentrations, leaving a window near 30% doping where the sliced state is
marginally stable.Comment: 6 pages with 5 embedded postscript figure
- …