22 research outputs found

    Ubiquitination mediates Kv1.3 endocytosis as a mechanism for protein Kinase C-dependent modulation

    Get PDF
    The voltage-dependent potassium channel Kv1.3 plays essential physiological functions in the immune system. Kv1.3, regulating the membrane potential, facilitates downstream Ca2+ -dependent pathways and becomes concentrated in specific membrane microdomains that serve as signaling platforms. Increased and/or delocalized expression of the channel is observed at the onset of several autoimmune diseases. In this work, we show that adenosine (ADO), which is a potent endogenous modulator, stimulates PKC, thereby causing immunosuppression. PKC activation triggers down-regulation of Kv1.3 by inducing a clathrin-mediated endocytic event that targets the channel to lysosomal-degradative compartments. Therefore, the abundance of Kv1.3 at the cell surface decreases, which is clearly compatible with an effective anti-inflammatory response. This mechanism requires ubiquitination of Kv1.3, catalyzed by the E3 ubiquitin-ligase Nedd4-2. Postsynaptic density protein 95 (PSD-95), a member of the MAGUK family, recruits Kv1.3 into lipid-raft microdomains and protects the channel against ubiquitination and endocytosis. Therefore, the Kv1.3/PSD-95 association fine-tunes the anti-inflammatory response in leukocytes. Because Kv1.3 is a promising multi-therapeutic target against human pathologies, our results have physiological relevance. In addition, this work elucidates the ADO-dependent PKC-mediated molecular mechanism that triggers immunomodulation by targeting Kv1.3 in leukocytes

    Turnover of voltage-gated potassium channel Kv 1.3

    Get PDF
    [eng] Voltage-gated K channels (Kv) is large family of channels that are expressed in both excitable and non-excitable cells. In excitable cells they contribute to the control of resting membrane potential and action potentials frequency and duration. In non-excitable tissues they are involved in many processes such as secretion to cell proliferation. Kv1.3 channel plays a key role in a wide range of physiological phenomenon. Regulation of this transmembrane protein is therefore essential for a correct function of the living cell. The balance between synthesis and degradation is highly important and must be tightly regulated. The present dissertation is focused in investigating endocytosis mechanisms of Kv1.3, as a process controlling number of the channel on the cell surface and the possible implication in cell destiny. We deciphered major endocytosis mechanisms triggered by EGF and Adenosine (ADO) in HeLa and HEK 293 heterologous cell systems as well as in native cell lines (macrophages, dendritic or neuronal precursor). These studies pointed out the impact of endocytosis in turnover and homeostasis of Kv1.3 and possible physiological relevance of these finding. Our experiments showed two different ways to control abundance of the Kv1.3 channel by EGF: via tyrosine phosphorylation and unconventional ERK1/2-dependent mechanisms. EGF triggered clathrin-dependent lysosomal degradation of Kv1.3. Moreover, this study show a high physiological relevance, pointing to EGF as a Kv1.3 inhibitor that might therefore reduce radiation-induced brain injury by targeting the key cells involved in the inflammatory process. As next, study was to investigating PMA-induced PKC-dependent endocytosis and ubiquitination. We revealed that PMA triggered PKC-dependent ubiquitin-mediated lysosomal degradation of Kv1.3. Next, we show that adenosine (ADO), which is a potent endogenous modulator, similar to PMA, stimulates PKC, thereby causing immunosuppression. PKC activation triggers down-regulation of Kv1.3 by inducing a clathrin-mediated endocytosis which targets the channel to lysosomal-degradative compartments. Therefore, the abundance of Kv1.3 at the cell surface decreases, which is clearly compatible with an effective anti-inflammatory response. This mechanism requires ubiquitination of Kv1.3, catalyzed by the E3 ubiquitin-ligase Nedd4-2. However, we discover that ADO activates both PKC and PKA signaling pathways. To further investigate the molecular mechanisms of the Kv1.3 internalization in response to ADO, we have examined the effects of PKA antagonists. Our results, for the first time, provided evidence on the effect of PKA activation on the Kv1.3 trafficking. Our findings indicated that PKA adenosine activation triggered Kv1.3 endocytosis redundantly to PKC. In addition, we put a hypothesis that PKA downregulated Kv1.3 in an ubiquitin-independent manner. In the last part of this dissertation we concentrated at molecular determinants involved in Kv1.3 ubiquitination. We found that complementary and redundant lysines participate in the ubiquitin-dependent PKC and PKA regulation of Kv1.

    Ubiquitination mediates Kv1.3 endocytosis as a mechanism for protein kinase C-dependent modulation

    No full text
    The voltage-dependent potassium channel Kv1.3 plays essential physiological functions in the immune system. Kv1.3, regulating the membrane potential, facilitates downstream Ca 2+ -dependent pathways and becomes concentrated in specific membrane microdomains that serve as signaling platforms. Increased and/or delocalized expression of the channel is observed at the onset of several autoimmune diseases. In this work, we show that adenosine (ADO), which is a potent endogenous modulator, stimulates PKC, thereby causing immunosuppression. PKC activation triggers down-regulation of Kv1.3 by inducing a clathrin-mediated endocytic event that targets the channel to lysosomal-degradative compartments. Therefore, the abundance of Kv1.3 at the cell surface decreases, which is clearly compatible with an effective anti-inflammatory response. This mechanism requires ubiquitination of Kv1.3, catalyzed by the E3 ubiquitin-ligase Nedd4-2. Postsynaptic density protein 95 (PSD-95), a member of the MAGUK family, recruits Kv1.3 into lipid-raft microdomains and protects the channel against ubiquitination and endocytosis. Therefore, the Kv1.3/PSD-95 association fine-tunes the anti-inflammatory response in leukocytes. Because Kv1.3 is a promising multi-therapeutic target against human pathologies, our results have physiological relevance. In addition, this work elucidates the ADO-dependent PKC-mediated molecular mechanism that triggers immunomodulation by targeting Kv1.3 in leukocytes

    Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation

    No full text
    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification

    Ubiquitination mediates Kv1.3 endocytosis as a mechanism for protein Kinase C-dependent modulation

    No full text
    The voltage-dependent potassium channel Kv1.3 plays essential physiological functions in the immune system. Kv1.3, regulating the membrane potential, facilitates downstream Ca2+ -dependent pathways and becomes concentrated in specific membrane microdomains that serve as signaling platforms. Increased and/or delocalized expression of the channel is observed at the onset of several autoimmune diseases. In this work, we show that adenosine (ADO), which is a potent endogenous modulator, stimulates PKC, thereby causing immunosuppression. PKC activation triggers down-regulation of Kv1.3 by inducing a clathrin-mediated endocytic event that targets the channel to lysosomal-degradative compartments. Therefore, the abundance of Kv1.3 at the cell surface decreases, which is clearly compatible with an effective anti-inflammatory response. This mechanism requires ubiquitination of Kv1.3, catalyzed by the E3 ubiquitin-ligase Nedd4-2. Postsynaptic density protein 95 (PSD-95), a member of the MAGUK family, recruits Kv1.3 into lipid-raft microdomains and protects the channel against ubiquitination and endocytosis. Therefore, the Kv1.3/PSD-95 association fine-tunes the anti-inflammatory response in leukocytes. Because Kv1.3 is a promising multi-therapeutic target against human pathologies, our results have physiological relevance. In addition, this work elucidates the ADO-dependent PKC-mediated molecular mechanism that triggers immunomodulation by targeting Kv1.3 in leukocytes

    Ubiquitination mediates Kv1.3 endocytosis as a mechanism for protein Kinase C-dependent modulation

    No full text
    The voltage-dependent potassium channel Kv1.3 plays essential physiological functions in the immune system. Kv1.3, regulating the membrane potential, facilitates downstream Ca2+ -dependent pathways and becomes concentrated in specific membrane microdomains that serve as signaling platforms. Increased and/or delocalized expression of the channel is observed at the onset of several autoimmune diseases. In this work, we show that adenosine (ADO), which is a potent endogenous modulator, stimulates PKC, thereby causing immunosuppression. PKC activation triggers down-regulation of Kv1.3 by inducing a clathrin-mediated endocytic event that targets the channel to lysosomal-degradative compartments. Therefore, the abundance of Kv1.3 at the cell surface decreases, which is clearly compatible with an effective anti-inflammatory response. This mechanism requires ubiquitination of Kv1.3, catalyzed by the E3 ubiquitin-ligase Nedd4-2. Postsynaptic density protein 95 (PSD-95), a member of the MAGUK family, recruits Kv1.3 into lipid-raft microdomains and protects the channel against ubiquitination and endocytosis. Therefore, the Kv1.3/PSD-95 association fine-tunes the anti-inflammatory response in leukocytes. Because Kv1.3 is a promising multi-therapeutic target against human pathologies, our results have physiological relevance. In addition, this work elucidates the ADO-dependent PKC-mediated molecular mechanism that triggers immunomodulation by targeting Kv1.3 in leukocytes

    Unconventional EGF-induced ERK1/2-mediated Kv1.3 endocytosis

    Get PDF
    The potassium channel Kv1.3 plays roles in immunity, neuronal development and sensory discrimination. Regulation of Kv1.3 by kinase signaling has been studied. In this context, EGF binds to specific receptors (EGFR) and triggers tyrosine kinase-dependent signaling, which down-regulates Kv1.3 currents. We show that Kv1.3 undergoes EGF-dependent endocytosis. This EGF-mediated mechanism is relevant because is involved in adult neural stem cell fate determination. We demonstrated that changes in Kv1.3 subcellular distribution upon EGFR activation were due to Kv1.3 clathrin-dependent endocytosis, which targets the Kv1.3 channels to the lysosomal degradative pathway. Interestingly, our results further revealed that relevant tyrosines and other interacting motifs, such as PDZ and SH3 domains, were not involved in the EGF-dependent Kv1.3 internalization. However, a new, and yet undescribed mechanism, of ERK1/2-mediated threonine phosphorylation is crucial for the EGF-mediated Kv1.3 endocytosis. Our results demonstrate that EGF triggers the down-regulation of Kv1.3 activity and its expression at the cell surface, which is important for the development and migration of adult neural progenitors.Supported by the Ministerio de Economía y Competitividad (MINECO), Spain (BFU2014-54928-R and CSD2008-00005 to AF; SAF2013-42445-R to ES). MPV and KS hold fellowships from the MINECO. RMM and NC were supported by the Juan de la Cierva program (MINECO). AS was supported by NIH grants DA014204 and CA08915
    corecore