16 research outputs found

    Electron-nuclear interaction in 13C nanotube double quantum dots

    Get PDF
    For coherent electron spins, hyperfine coupling to nuclei in the host material can either be a dominant source of unwanted spin decoherence or, if controlled effectively, a resource allowing storage and retrieval of quantum information. To investigate the effect of a controllable nuclear environment on the evolution of confined electron spins, we have fabricated and measured gate-defined double quantum dots with integrated charge sensors made from single-walled carbon nanotubes with a variable concentration of 13C (nuclear spin I=1/2) among the majority zero-nuclear-spin 12C atoms. Spin-sensitive transport in double-dot devices grown using methane with the natural abundance (~ 1%) of 13C is compared with similar devices grown using an enhanced (~99%) concentration of 13C. We observe strong isotope effects in spin-blockaded transport, and from the dependence on external magnetic field, estimate the hyperfine coupling in 13C nanotubes to be on the order of 100 micro-eV, two orders of magnitude larger than anticipated theoretically. 13C-enhanced nanotubes are an interesting new system for spin-based quantum information processing and memory, with nuclei that are strongly coupled to gate-controlled electrons, differ from nuclei in the substrate, are naturally confined to one dimension, lack quadrupolar coupling, and have a readily controllable concentration from less than one to 10^5 per electron.Comment: supplementary discussion at http://marcuslab.harvard.edu/13CSupp.pd

    Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot

    Get PDF
    We use charge sensing of Pauli blockade (including spin and isospin) in a two-electron 13C nanotube double quantum dot to measure relaxation and dephasing times. The relaxation time, T1, first decreases with parallel magnetic field then goes through a minimum in a field of 1.4 T. We attribute both results to the spin-orbit-modified electronic spectrum of carbon nanotubes, which suppresses hyperfine mediated relaxation and enhances relaxation due to soft phonons. The inhomogeneous dephasing time, T2*, is consistent with previous data on hyperfine coupling strength in 13C nanotubes.Comment: related papers at http://marcuslab.harvard.ed

    A Model for the Origin and Properties of Flicker-Induced Geometric Phosphenes

    Get PDF
    We present a model for flicker phosphenes, the spontaneous appearance of geometric patterns in the visual field when a subject is exposed to diffuse flickering light. We suggest that the phenomenon results from interaction of cortical lateral inhibition with resonant periodic stimuli. We find that the best temporal frequency for eliciting phosphenes is a multiple of intrinsic (damped) oscillatory rhythms in the cortex. We show how both the quantitative and qualitative aspects of the patterns change with frequency of stimulation and provide an explanation for these differences. We use Floquet theory combined with the theory of pattern formation to derive the parameter regimes where the phosphenes occur. We use symmetric bifurcation theory to show why low frequency flicker should produce hexagonal patterns while high frequency produces pinwheels, targets, and spirals

    Review of A Tale of Seven Elements

    No full text

    A dye laser-cryogenic helium jet system and recoil-mass-separator for studies of nuclei far from stability

    No full text
    Most of the recent applications of lasers to on-line measurements of hyperfine interactions and isotope shifts have been made using high energy proton beams to produce large fluxes of a wide range of unstable atoms. On-line mass separators select the atomic species of interest. At NSRL the authors have in the final stages of development an on-line laser spectroscopy system for the upgraded MP tandem. The system is based on the use of more selective heavy-ion reactions so that mass separation is not usually required, and very sensitive detection techniques so that measurements are possible with small fluxes of atoms. A recoil mass separator is also near completion and will be used for a variety of studies of nuclei far from stability, including providing, when necessary, mass separated reaction products for study using the laser system. The heavy ion beam energy available from the upgraded MP allows production of neutron deficient nuclei by means of fusion-evaporation reactions that is limited only by the onset of charge particle evaporation, not beam energy. (5 refs)

    Neural interactions between flicker-induced self-organized visual hallucinations and physical stimuli

    No full text
    Spontaneous pattern formation in cortical activity may have consequences for perception, but little is known about interactions between sensory-driven and self-organized cortical activity. To address this deficit, we explored the relationship between ordinary stimulus-controlled pattern perception and the autonomous hallucinatory geometrical pattern formation that occurs for unstructured visual stimulation (e.g., empty-field flicker). We found that flicker-induced hallucinations are biased by the presentation of adjacent geometrical stimuli; geometrical forms that map to cortical area V1 as orthogonal gratings are perceptually opponent in biasing hallucinations. Rotating fan blades and pulsating circular patterns are the most salient biased hallucinations. Apparent motion and fractal (1/f) noise are also effective in driving hallucinatory pattern formation (the latter is consistent with predictions of spatiotemporal pattern formation driven by stochastic resonance). The behavior of these percepts suggests that self-organized hallucinatory pattern formation in human vision is governed by the same cortical properties of localized processing, lateral inhibition, simultaneous contrast, and nonlinear retinotopic mapping that govern ordinary vision

    First cascades in \u3csup\u3e73\u3c/sup\u3eBr and high-spin states in \u3csup\u3e75\u3c/sup\u3eBr

    No full text
    The reaction 54Fe(28Si, xpyn) at 128 MeV was employed to identify two cascades in 73Br for the first time. The cascades were identified by employing the technique of measuring gamma rays in coincidence with reaction products of mass 73, separated in a recoil mass spectrometer. The energy spacings in the bands indicate that the quadrupole deformation in 73Br is larger than that of 75Br. The previously known bands in 75Br were extended up to 29/2+ for the positive-parity band and up to 33/2- for the negative-parity band
    corecore