1,262 research outputs found
Predictors of early postpartum mental distress in mothers with midwifery home care - results from a nested case-control study
PRINCIPLES: The prevalence of early postpartum mental health conditions is high. Midwives and other health professionals visiting women at home may identify mothers at risk. This seems crucial given decreasing trends of length of hospital stay after childbirth. This study aimed to identify predictors of maternal mental distress in a midwifery home care setting.
METHODS: Using the statistical database of independent midwives' services in Switzerland in 2007, we conducted a matched nested case-control study. Out of a source population of 34,295 mothers with midwifery home care in the first ten days after childbirth, 935 mothers with maternal distress and 3,645 controls, matched by midwife, were included. We analysed whether socio-demographic, maternal and neonatal factors predict maternal mental distress by multivariable conditional logistic regression analysis.
RESULTS: Infant crying problems and not living with a partner were the strongest predictors for maternal distress, whereas higher parity was the most protective factor. Significantly elevated risks were also found for older age, lower educational levels, breast/breastfeeding problems, infant weight gain concerns, neonatal pathologies and use of midwifery care during pregnancy. A lower likelihood for maternal distress was seen for non-Swiss nationality, full-time employment before birth, intention to return to work after birth and midwife-led birth.
CONCLUSION: The study informs on predictors of maternal mental distress identified in a home care setting in the early postpartum period. Midwives and other health care professionals should pay particular attention to mothers of excessively crying infants, single mothers and primipara, and assess the need for support of these mothers
Hier ist wahrhaftig ein Loch im Himmel - The NGC 1999 dark globule is not a globule
The NGC 1999 reflection nebula features a dark patch with a size of ~10,000
AU, which has been interpreted as a small, dense foreground globule and
possible site of imminent star formation. We present Herschel PACS far-infrared
70 and 160mum maps, which reveal a flux deficit at the location of the globule.
We estimate the globule mass needed to produce such an absorption feature to be
a few tenths to a few Msun. Inspired by this Herschel observation, we obtained
APEX LABOCA and SABOCA submillimeter continuum maps, and Magellan PANIC
near-infrared images of the region. We do not detect a submillimer source at
the location of the Herschel flux decrement; furthermore our observations place
an upper limit on the mass of the globule of ~2.4x10^-2 Msun. Indeed, the
submillimeter maps appear to show a flux depression as well. Furthermore, the
near-infrared images detect faint background stars that are less affected by
extinction inside the dark patch than in its surroundings. We suggest that the
dark patch is in fact a hole or cavity in the material producing the NGC 1999
reflection nebula, excavated by protostellar jets from the V 380 Ori multiple
system.Comment: accepted for the A&A Herschel issue; 7 page
Electron-Paramagnetic-Resonance Study of GaAs Grown by Low-Temperature Molecular-Beam Epitaxy
Electron-paramagnetic-resonance results demonstrate an arsenic-antisite related deep donor defect to be the dominant native defect in GaAs layers grown by low-temperature molecular-beam epitaxy (LTMBE). This defect is different from the EL2-related native arsenic-antisite defect. The thermal-equilibrium concentration of 3×1018 cm−3 ionized AsGa defects directly shows the additional presence of unidentified acceptor defects in the same concentration range. The defect distribution in GaAs grown by LTMBE is unstable under thermal annealing at T≳500 °C
Intercomparison of field measurements of nitrous acid (HONO) during the SHARP campaign
Because of the importance of HONO as a radical reservoir, consistent and accurate measurements of its concentration are needed. As part of SHARP (Study of Houston Atmospheric Radical Precursors), time series of HONO were obtained by six different measurement techniques on the roof of the Moody Tower at the University of Houston. Techniques used were long path differential optical absorption spectroscopy (DOAS), stripping coil-visible absorption photometry (SC-AP), long path absorption photometry (LOPAP® ), mist chamber/ion chromatography (MC-IC), quantum cascade-tunable infrared laser differential absorption spectroscopy (QC-TILDAS), and ion drift-chemical ionization mass spectrometry (ID-CIMS). Various combinations of techniques were in operation from 15 April through 31 May 2009. All instruments recorded a similar diurnal pattern of HONO concentrations with higher median and mean values during the night than during the day. Highest values were observed in the final 2 weeks of the campaign. Inlets for the MC-IC, SC-AP, and QC-TILDAS were collocated and agreed most closely with each other based on several measures. Largest differences between pairs of measurements were evident during the day for concentrations ~100 parts per trillion (ppt). Above ~ 200 ppt, concentrations from the SC-AP, MC-IC, and QC-TILDAS converged to within about 20%, with slightly larger discrepancies when DOAS was considered. During the first 2 weeks, HONO measured by ID-CIMS agreed with these techniques, but ID-CIMS reported higher values during the afternoon and evening of the final 4 weeks, possibly from interference from unknown sources. A number of factors, including building related sources, likely affected measured concentrations
Electronic properties of GaAs surfaces etched in an electron cyclotron resonance source and chemically passivated using P2S5P2S5
Photoreflectance has been used to study the electronic properties of (100) GaAs surfaces exposed to a Cl2/ArCl2/Ar plasma generated by an electron cyclotron resonance source and subsequently passivated by P2S5.P2S5. The plasma etch shifts the Fermi level of p-GaAsp-GaAs from near the valence band to midgap, but has no effect on n-GaAs.n-GaAs. For ion energies below 250 eV, post-etch P2S5P2S5 chemical passivation removes the surface etch damage and restores the electronic properties to pre-etch conditions. Above 250 eV, the etch produces subsurface defects which cannot be chemically passivated. Auger electron spectroscopy shows that etching increases As at the GaAs/oxide interface, while passivation reduces it. © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69373/2/APPLAB-73-1-114-1.pd
- …