477 research outputs found

    Impaired in vivo binding of MeCP2 to chromatin in the absence of its DNA methyl-binding domain

    Get PDF
    MeCP2 is a methyl-CpG-binding protein that is a main component of brain chromatin in vertebrates. In vitro studies have determined that in addition to its specific methyl-CpG-binding domain (MBD) MeCP2 also has several chromatin association domains. However, the specific interactions of MeCP2 with methylated or non-methylated chromatin regions and the structural characteristics of the resulting DNA associations in vivo remain poorly understood. We analysed the role of the MBD in MeCP2-chromatin associations in vivo using an MeCP2 mutant Rett syndrome mouse model (Mecp2(tm1.1Jae)) in which exon 3 deletion results in an N-terminal truncation of the protein, including most of the MBD. Our results show that in mutant mice, the truncated form of MeCP2 (delta MeCP2) is expressed in different regions of the brain and liver, albeit at 50% of its wild-type (wt) counterpart. In contrast to the punctate nuclear distribution characteristic of wt MeCP2, delta MeCP2 exhibits both diffuse nuclear localization and a substantial retention in the cytoplasm, suggesting a dysfunction of nuclear transport. In mutant brain tissue, neuronal nuclei are smaller, and delta MeCP2 chromatin is digested faster by nucleases, producing a characteristic nuclease-resistant dinucleosome. Although a fraction of delta MeCP2 is found associated with nucleosomes, its interaction with chromatin is transient and weak. Thus, our results unequivocally demonstrate that in vivo the MBD of MeCP2 together with its adjacent region in the N-terminal domain are critical for the proper interaction of the protein with chromatin, which cannot be replaced by any other of its protein domains

    Spontaneous and deliberate future thinking: A dual process account

    Get PDF
    © 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe

    Dark Control: The Default Mode Network as a Reinforcement Learning Agent

    Get PDF
    International audienceThe default mode network (DMN) is believed to subserve the baseline mental activity in humans. Its higher energy consumption compared to other brain networks and its intimate coupling with conscious awareness are both pointing to an unknown overarching function. Many research streams speak in favor of an evolutionarily adaptive role in envisioning experience to anticipate the future. In the present work, we propose a process model that tries to explain how the DMN may implement continuous evaluation and prediction of the environment to guide behavior. The main purpose of DMN activity, we argue, may be described by Markov Decision Processes that optimize action policies via value estimates based through vicarious trial and error. Our formal perspective on DMN function naturally accommodates as special cases previous interpretations based on (1) predictive coding, (2) semantic associations, and (3) a sentinel role. Moreover, this process model for the neural optimization of complex behavior in the DMN offers parsimonious explanations for recent experimental findings in animals and humans

    MEMORY AND COGNITIVE ABILITIES IN UNIVERSITY PROFESSORS:

    Full text link
    Professors from the University of California at Berkeley were administered a 90-min test battery of cognitive performance that included measures of reaction time, paired-associate learning, working memory, and prose recall. Age effects among the professors were observed on tests of reaction time, paired-associate memory, and some aspects of working memory. Age effects were not observed on measures of proactive interference and prose recall, though age-related declines are generally observed in standard groups of elderly individuals. The findings suggest that age-related decrements in certain cognitive functions may be mitigated in intelligent, cognitively active individualsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72229/1/j.1467-9280.1995.tb00510.x.pd

    Dual-task costs while walking increase in old age for some, but not for other tasks: an experimental study of healthy young and elderly persons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been suggested in the past that the ability to walk while concurrently engaging in a second task deteriorates in old age, and that this deficit is related to the high incidence of falls in the elderly. However, previous studies provided inconsistent findings about the existence of such an age-related dual-task deficit (ARD). In an effort to explain this inconsistency, we explored whether ARD while walking emerges for some, but not for other types of task.</p> <p>Methods</p> <p>Healthy young and elderly subjects were tested under five different combinations of a walking and a non-walking task. The results were analysed jointly with those of a previous study from our lab, such that a total of 13 task combinations were evaluated. For each task combination and subject, we calculated the mean dual-task costs across both constituent tasks, and quantified ARD as the difference between those costs in elderly and in young subjects.</p> <p>Results</p> <p>An analysis of covariance yielded no significant effects of obstacle presence and overall task difficulty on ARD, but a highly significant effect of visual demand: non-walking tasks which required ongoing visual observation led to ARD of more than 8%, while those without such requirements led to near-zero ARD. We therefore concluded that the visual demand of the non-walking task is critical for the emergence of ARD while walking.</p> <p>Conclusion</p> <p>Combinations of walking and concurrent visual observation, which are common in everyday life, may contribute towards disturbed gait and falls during daily activities in old age. Prevention and rehabilitation programs for seniors should therefore include training of such combinations.</p

    Prevalence and Subtypes of Mild Cognitive Impairment in Parkinson's Disease.

    Get PDF
    The current study examined the prevalence and subtypes of Mild Cognitive Impairment (MCI) in an Australian sample of people with Parkinson's Disease (PD). Seventy participants with PD completed neuropsychological assessments of their cognitive performance, using MDS Task Force Level II diagnostic criteria for PD-MCI. A cut-off score of less than one standard deviation (SD) below normative data determined impaired performance on a neuropsychological test. Of 70 participants, 45 (64%) met Level II diagnostic criteria for PD-MCI. Among those with PD-MCI, 42 (93%) were identified as having multiple domain impairment (28 as amnestic multiple domain and 14 as nonamnestic multiple domain). Single domain impairment was less frequent (2 amnestic/1 nonamnestic). Significant differences were found between the PD-MCI and Normal Cognition groups, across all cognitive domains. Multiple domain cognitive impairment was more frequent than single domain impairment in an Australian sample of people with PD. However, PD-MCI is heterogeneous and current prevalence and subtyping statistics may be an artifact of variable application methods of the criteria (e.g., cut off scores and number of tests). Future longitudinal studies refining the criteria will assist with subtyping the progression of PD-MCI, while identifying individuals who may benefit from pharmacological and nonpharmacological interventions

    Mapping Connectivity Damage in the Case of Phineas Gage

    Get PDF
    White matter (WM) mapping of the human brain using neuroimaging techniques has gained considerable interest in the neuroscience community. Using diffusion weighted (DWI) and magnetic resonance imaging (MRI), WM fiber pathways between brain regions may be systematically assessed to make inferences concerning their role in normal brain function, influence on behavior, as well as concerning the consequences of network-level brain damage. In this paper, we investigate the detailed connectomics in a noted example of severe traumatic brain injury (TBI) which has proved important to and controversial in the history of neuroscience. We model the WM damage in the notable case of Phineas P. Gage, in whom a “tamping iron” was accidentally shot through his skull and brain, resulting in profound behavioral changes. The specific effects of this injury on Mr. Gage's WM connectivity have not previously been considered in detail. Using computed tomography (CT) image data of the Gage skull in conjunction with modern anatomical MRI and diffusion imaging data obtained in contemporary right handed male subjects (aged 25–36), we computationally simulate the passage of the iron through the skull on the basis of reported and observed skull fiducial landmarks and assess the extent of cortical gray matter (GM) and WM damage. Specifically, we find that while considerable damage was, indeed, localized to the left frontal cortex, the impact on measures of network connectedness between directly affected and other brain areas was profound, widespread, and a probable contributor to both the reported acute as well as long-term behavioral changes. Yet, while significantly affecting several likely network hubs, damage to Mr. Gage's WM network may not have been more severe than expected from that of a similarly sized “average” brain lesion. These results provide new insight into the remarkable brain injury experienced by this noteworthy patient

    Neuroelectric Evidence for Cognitive Association Formation: An Event-Related Potential Investigation

    Get PDF
    Although many types of learning require associations to be formed, little is known about the brain mechanisms engaged in association formation. In the present study, we measured event-related potentials (ERPs) while participants studied pairs of semantically related words, with each word of a pair presented sequentially. To narrow in on the associative component of the signal, the ERP difference between the first and second words of a pair (Word2-Word1) was derived separately for subsequently recalled and subsequently not-recalled pairs. When the resulting difference waveforms were contrasted, a parietal positivity was observed for subsequently recalled pairs around 460 ms after the word presentation onset, followed by a positive slow wave that lasted until around 845 ms. Together these results suggest that associations formed between semantically related words are correlated with a specific neural signature that is reflected in scalp recordings over the parietal region

    Revealing the Functional Neuroanatomy of Intrinsic Alertness Using fMRI: Methodological Peculiarities

    Get PDF
    Clinical observations and neuroimaging data revealed a right-hemisphere fronto-parietal-thalamic-brainstem network for intrinsic alertness, and additional left fronto-parietal activity during phasic alertness. The primary objective of this fMRI study was to map the functional neuroanatomy of intrinsic alertness as precisely as possible in healthy participants, using a novel assessment paradigm already employed in clinical settings. Both the paradigm and the experimental design were optimized to specifically assess intrinsic alertness, while at the same time controlling for sensory-motor processing. The present results suggest that the processing of intrinsic alertness is accompanied by increased activity within the brainstem, thalamus, anterior cingulate gyrus, right insula, and right parietal cortex. Additionally, we found increased activation in the left hemisphere around the middle frontal gyrus (BA 9), the insula, the supplementary motor area, and the cerebellum. Our results further suggest that rather minute aspects of the experimental design may induce aspects of phasic alertness, which in turn might lead to additional brain activation in left-frontal areas not normally involved in intrinsic alertness. Accordingly, left BA 9 activation may be related to co-activation of the phasic alertness network due to the switch between rest and task conditions functioning as an external warning cue triggering the phasic alertness network. Furthermore, activation of the intrinsic alertness network during fixation blocks due to enhanced expectancy shortly before the switch to the task block might, when subtracted from the task block, lead to diminished activation in the typical right hemisphere intrinsic alertness network. Thus, we cautiously suggest that – as a methodological artifact – left frontal activations might show up due to phasic alertness involvement and intrinsic alertness activations might be weakened due to contrasting with fixation blocks, when assessing the functional neuroanatomy of intrinsic alertness with a block design in fMRI studies
    corecore