281 research outputs found

    DNA methylation immediately adjacent to active histone marking does not silence transcription

    Get PDF
    Active promoters generally contain histone H3/H4 hyperacetylation and tri-methylation at H3 lysine 4, whereas repressed promoters are associated with DNA methylation. Here we show that the repressed erythroid-specific carbonic anhydrase II (CAII) promoter has active histone modifications localized around the transcription start, while high levels of CpG methylation are present directly upstream from these active marks. Despite the presence of active histone modifications, the repressed promoter requires hormone-induced activation for efficient preinitiation complex assembly. Transient and positional changes in histone H3/H4 acetylation and local changes in nucleosome density are evident during activation, but the bipartite epigenetic code is stably maintained. Our results suggest that active histone modifications may prevent spreading of CpG methylation towards the promoter and show that repressive DNA methylation immediately adjacent to a promoter does not necessarily repress transcription

    Controlled Assembly of Macromolecular β-Sheet Fibrils

    Get PDF
    Construction of functional molecular devices by directed assembly processes is one of the main challenges in the field of nanotechnology. Many approaches to this challenge use biological assembly as a source of inspiration for the build up of new materials with controlled organization at the nanoscale. In particular, the self-assembly properties of β-sheet peptides have been used in the design of supramolecular materials, such as tapes, nanotubes, and fibrils

    Guidelines on clinical presentation and management of non-dystrophic myotonias

    Get PDF
    The non‐dystrophic myotonias (NDMs) are rare muscle hyperexcitability disorders caused by gain‐of‐function mutations in the SCN4A gene or loss‐of‐function mutations in the CLCN1 gene. Clinically, they are characterized by myotonia, defined as delayed muscle relaxation after voluntary contraction, which leads to symptoms of muscle stiffness, pain, fatigue, and weakness. Diagnosis is based on history and examination findings, the presence of electrical myotonia on electromyography (EMG), and genetic confirmation. In the absence of genetic confirmation, the diagnosis is supported by detailed electrophysiological testing, exclusion of other related disorders, and analysis of a variant of uncertain significance (VUS) if present. Symptomatic treatment with a sodium channel blocker, such as mexiletine, is usually the first step in management, as well as educating patients about potential anesthetic complications

    An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers.

    Get PDF
    Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors

    FACIL: Fast and Accurate Genetic Code Inference and Logo

    Get PDF
    Motivation: The intensification of DNA sequencing will increasingly unveil uncharacterized species with potential alternative genetic codes. A total of 0.65% of the DNA sequences currently in Genbank encode their proteins with a variant genetic code, and these exceptions occur in many unrelated taxa. Results: We introduce FACIL (Fast and Accurate genetic Code Inference and Logo), a fast and reliable tool to evaluate nucleic acid sequences for their genetic code that detects alternative codes even in species distantly related to known organisms. To illustrate this, we apply FACIL to a set of mitochondrial genomic contigs of Globobulimina pseudospinescens. This foraminifer does not have any sequenced close relative in the databases, yet we infer its alternative genetic code with high confidence values. Results are intuitively visualized in a Genetic Code Logo

    Isolated eyelid closure myotonia in two families with sodium channel myotonia

    Get PDF
    Sodium channelopathies (NaCh), as part of the non-dystrophic myotonic syndromes (NDMs), reflect a heterogeneous group of clinical phenotypes accompanied by a generalized myotonia. Because of recent availability of diagnostic genetic testing in NDM, there is a need for identification of clear clinical genotype–phenotype correlations. This will enable clinicians to distinguish NDMs from myotonic dystrophy, thus allowing them to inform patients promptly about the disease, perform genetic counseling, and orient therapy (Vicart et al. Neurol Sci 26:194–202, 2005). We describe the first distinctive clinical genotype–phenotype correlation within NaCh: a strictly isolated eyelid closure myotonia associated with the L250P mutation in SCN4A. Using clinical assessment and needle EMG, we identified this genotype–phenotype correlation in six L250P patients from one NaCh family and confirmed this finding in another, unrelated NaCh family with three L250P patients

    Regulation of DNA Methylation Patterns by CK2-Mediated Phosphorylation of Dnmt3a

    Get PDF
    DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns

    The topography of mutational processes in breast cancer genomes.

    Get PDF
    Somatic mutations in human cancers show unevenness in genomic distribution that correlate with aspects of genome structure and function. These mutations are, however, generated by multiple mutational processes operating through the cellular lineage between the fertilized egg and the cancer cell, each composed of specific DNA damage and repair components and leaving its own characteristic mutational signature on the genome. Using somatic mutation catalogues from 560 breast cancer whole-genome sequences, here we show that each of 12 base substitution, 2 insertion/deletion (indel) and 6 rearrangement mutational signatures present in breast tissue, exhibit distinct relationships with genomic features relating to transcription, DNA replication and chromatin organization. This signature-based approach permits visualization of the genomic distribution of mutational processes associated with APOBEC enzymes, mismatch repair deficiency and homologous recombinational repair deficiency, as well as mutational processes of unknown aetiology. Furthermore, it highlights mechanistic insights including a putative replication-dependent mechanism of APOBEC-related mutagenesis

    Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes

    Get PDF
    PRC2 is thought to be the histone methyltransferase (HMTase) responsible for H3-K27 trimethylation at Polycomb target genes. Here we report the biochemical purification and characterization of a distinct form of Drosophila PRC2 that contains the Polycomb group protein polycomblike (Pcl). Like PRC2, Pcl-PRC2 is an H3-K27-specific HMTase that mono-, di- and trimethylates H3-K27 in nucleosomes in vitro. Analysis of Drosophila mutants that lack Pcl unexpectedly reveals that Pcl-PRC2 is required to generate high levels of H3-K27 trimethylation at Polycomb target genes but is dispensable for the genome-wide H3-K27 mono- and dimethylation that is generated by PRC2. In Pcl mutants, Polycomb target genes become derepressed even though H3-K27 trimethylation at these genes is only reduced and not abolished, and even though targeting of the Polycomb protein complexes PhoRC and PRC1 to Polycomb response elements is not affected. Pcl-PRC2 is thus the HMTase that generates the high levels of H3-K27 trimethylation in Polycomb target genes that are needed to maintain a Polycomb-repressed chromatin state
    corecore