1,298 research outputs found

    Mixed Symmetry Solutions of Generalized Three-Particle Bargmann-Wigner Equations in the Strong-Coupling Limit

    Get PDF
    Starting from a nonlinear isospinor-spinor field equation, generalized three-particle Bargmann-Wigner equations are derived. In the strong-coupling limit, a special class of spin 1/2 bound-states are calculated. These solutions which are antisymmetric with respect to all indices, have mixed symmetries in isospin-superspin space and in spin orbit space. As a consequence of this mixed symmetry, we get three solution manifolds. In appendix \ref{b}, table 2, these solution manifolds are interpreted as the three generations of leptons and quarks. This interpretation will be justified in a forthcoming paper.Comment: 17 page

    Resposta do milheto comum a doses de nitrogênio em planossolo típico no litoral sul do Rio Grande do Sul.

    Get PDF
    bitstream/item/31615/1/comunicado86.pd

    Método de determinação de cálcio iônico no leite bovino.

    Get PDF
    bitstream/item/44002/1/documento-321.pd

    Atomistic modelling of large-scale metal film growth fronts

    Full text link
    We present simulations of metallization morphologies under ionized sputter deposition conditions, obtained by a new theoretical approach. By means of molecular dynamics simulations using a carefully designed interaction potential, we analyze the surface adsorption, reflection, and etching reactions taking place during Al physical vapor deposition, and calculate their relative probability. These probabilities are then employed in a feature-scale cellular-automaton simulator, which produces calculated film morphologies in excellent agreement with scanning-electron-microscopy data on ionized sputter deposition.Comment: RevTeX 4 pages, 2 figure

    Adição de gordura à dieta de bovinos de leite submetidos à transferência de embriões.

    Get PDF
    bitstream/item/43881/1/boletim-17.pd

    Thermodynamics of a mixed quantum-classical Heisenberg model in two dimensions

    Full text link
    We study the planar antiferromagnetic Heisenberg model on a decorated hexagonal lattice, involving both classical spins (occupying the vertices) and quantum spins (occupying the middle of the links). This study is motivated by the description of a recently synthesized molecular magnetic compound. First, we trace out the spin 1/2 degrees of freedom to obtain a fully classical model with an effective ferromagnetic interaction. Then, using high temperature expansions and Monte Carlo simulations, we analyse its thermal and magnetic properties. We show that it provides a good quantitative description of the magnetic susceptibility of the molecular magnet in its paramagnetic phase.Comment: Revtex, 6 pages, 4 included postscript figures, fig.1 upon request to [email protected] . To appear in J. of Physic C (condensed matter

    Multivariate moment closure techniques for stochastic kinetic models.

    Get PDF
    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs

    (Meta-)stable reconstructions of the diamond(111) surface: interplay between diamond- and graphite-like bonding

    Get PDF
    Off-lattice Grand Canonical Monte Carlo simulations of the clean diamond (111) surface, based on the effective many-body Brenner potential, yield the (2×1)(2\times1) Pandey reconstruction in agreement with \emph{ab-initio} calculations and predict the existence of new meta-stable states, very near in energy, with all surface atoms in three-fold graphite-like bonding. We believe that the long-standing debate on the structural and electronic properties of this surface could be solved by considering this type of carbon-specific configurations.Comment: 4 pages + 4 figures, Phys. Rev. B Rapid Comm., in press (15Apr00). For many additional details (animations, xyz files) see electronic supplement to this paper at http://www.sci.kun.nl/tvs/carbon/meta.htm
    corecore