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Stochastic effects dominate many chemical and biochemical processes. Their analysis, however,
can be computationally prohibitively expensive and a range of approximation schemes have been
proposed to lighten the computational burden. These, notably the increasingly popular linear noise
approximation and the more general moment expansion methods, perform well for many dynamical
regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between
the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such
approximations to the true stochastic processes. Moment-closure approaches promise to address this
problem by capturing higher-order terms of the temporally evolving probability distribution. Here,
we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics
of nonlinear systems. Multivariate closure captures the way that correlations between different molec-
ular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate
Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that
have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations
in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein
kinases signalling, where conventional stochastic simulation approaches incur unacceptably high
computational costs. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4929837]

I. INTRODUCTION

At the macroscopic scale, chemical reaction systems are
typically described using mass-action kinetics. These capture
how the concentrations of chemical species evolve over time.
But only at a scale where all chemical species involved in a
reaction system are available in sufficiently high abundances
is it possible to use that the behaviour is governed by the
speed of reactions, expressed by reaction rates. However, in
biochemical systems, the amount of most reactants is often
in the regime of a few dozen or hundred molecules, which
are distributed over relatively large volumes and hence it is
not guaranteed that reactant molecules of a specific reaction
can be found in sufficient proximity for the reaction to
occur.1 Furthermore, thermal noise also increases inherent
stochasticity of production and degradation reactions and
results in further variation in the copy numbers of reactants.
All of these factors profoundly affect and shape cell-to-cell
variability and heterogeneity in isogenic populations.

For these reasons, we often require the explicitly stochas-
tic formulation of chemical reaction systems, and cannot rely
on purely deterministic approaches to model (bio-)molecular
reaction systems: often stochasticity is an inalienable aspect
of such systems. The most general description of the change in
molecular abundances under stochastic dynamics is typically
provided by the Chemical Master Equation (CME). But
although the CME offers an exact description, it can only
be solved for a few, highly idealised cases; therefore, other

a)Electronic mail: e.lakatos13@imperial.ac.uk
b)Electronic mail: m.stumpf@imperial.ac.uk

approaches are needed to simulate and predict the system’s
behaviour.

One such method is Gillespie’s Stochastic Simulation
Algorithm (SSA),2 which offers a direct numerical simulation
of the system to obtain a single exact realisation of the
stochastic process modelled. But because of its computational
cost, it is impossible to model the behaviour of a large
population of cells, or of even moderately complex reaction
systems. Several variations of the SSA are available that
offer computational advantages which make analyses of such
systems feasible; all of these systems aim to capture the
essential aspects of the stochastic dynamics but in suitable
and computationally convenient approximation. Many of these
methods divide the system dynamics into a deterministic
part and a stochastic part. Hybrid methods,3,4 for example,
divide the species into low and high abundance groups, which
are modelled by SSA and ODEs, respectively. Stochastic
differential equations (SDE) treat changes in mean concen-
tration deterministically and add a (typically Wiener) noise
term to model fluctuations corresponding to each reaction.
The linear noise approximation (LNA)5,6 similarly separates
the deterministic trend (drift) and a noise term, providing
a quasi-second order approximation of the dynamics of the
probability density function. This method offers the exact
solution for reaction systems containing only zeroth- and first-
order reactions.

However, all these approximation methods rely on the
assumption that the abundance of each species is relatively
high, in the regime of 100–1000 or more molecules.7 Low
molecular numbers can cause hybrid and SDE methods to
take negative values while the LNA fails to correctly follow
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dynamics of highly nonlinear — especially oscillatory or
multi-stable — systems. For smaller but complex reaction
systems, which are still practically intractable with the SSA,
expansion methods have been developed that capture the
dynamics throughout the time evolution of moments of
the probability distribution. Many approaches include an
expansion for specific rate laws or moment orders, for
example, the so-called Mass Fluctuation Kinetics (MFK)8 and
the 2MA and 3MA9 approaches include expressions for the
first, second, and third central moments.

Ale et al.10 developed a moment expansion approxima-
tion (MEA) method to automatically generate equations of
arbitrary order central moments in a computationally efficient
manner. This method is suitable to capture the general behav-
iour of stochastic systems with complex dynamics and 10-100
molecules, which the LNA or conventional MFK approaches
typically fail to reproduce adequately. For systems involving
only zeroth and first order reactions, the method reproduces the
moment equations one would obtain directly from the CME.

Moment closure approximation techniques generally
combine an expansion method with a moment closure Ansatz
to obtain a closed set of differential equations solvable either
analytically (this is only possible very rarely) or numerically.
The closure of the equations is usually based on the assumption
that the variables approximately follow a known distribution
for which we already know some relation(s) between the
moments, and hence can derive an expression of the higher
order moments in terms of lower ones. Based on the properties
of normal distribution, Goodman11 and Whittle12 pioneered
by setting higher order cumulants to zero to close second
order equations, which inspired, for example, the work of
Matis and Guardiola.13 Gillespie and colleagues14,15 proposed
a method to obtain moment equations up to any order, listed
expressions as the basis of univariate normal, lognormal, and
Poisson closure, and demonstrated the algorithm by closing
equations of second moments assuming a normal distribution.
Krishnarajah et al.16 directly addressed the problem, which
arises in the case of highly skewed population distributions
when most closure schemes fail as the normal assumption
does not hold. They developed second- and third-order beta-
binomial, lognormal, and mixture closure techniques for two
stochastic epidemic models following a single variable. Later
they also described multivariate methods for an extended
model.17 In parallel, several approaches have been developed
which do not proceed from a particular distribution. The
most straightforward approach is the truncation of the system
applied by Lee et al.18 and similar to what we will refer to
as zero closure in the manuscript. Keeling19 derived moment
closure in a one-dimensional logistic system for third order
moments by formulating the system in terms of multiplicative
instead of additive moments. Singh and Hespanha20–22 derived
a systematic construction of moment closure functions based
on derivative matching, first in one and then in arbitrary
dimensions. In both cases, the derived moment closure
functions are consistent with the species being (jointly)
lognormally distributed. Hausken and Moxnes23 set higher
mixed moments to zero and assumed a Dirac distribution,
while Smadbeck and Kaznessis24 applied an information
theoretic point of view to close the equations based on the

assumption that a finite set of moments holds all information
about the system.

Although it has been shown that expansions up to three
moments tend to provide a more precise approximation
than only second order ones,25 general closure formulas for
closing third or higher order equation systems have not been
widely used. Furthermore, many of the existing algorithms
have been adapted manually to specific systems and appear
not to be concerned with (or capable to provide) general
applicability without manual intervention. Crucially, there
are no automatic approaches14,26 capable of generating and
closing moment equations of arbitrary order that could be
applied to different systems, especially those with nonlinear
(e.g., rational) rate laws, and different distributions (for
closure) without substantial modifications to the method itself.

In this paper, we introduce a new multivariate moment
closure approximation technique — consisted of a moment
expansion algorithm and generation of multivariate closure
expressions to close moment equations — that can be applied
to any stochastic kinetic system with no constraints on the
dimension, order or (lack of) linearity of the system, and
its interactions.62 Our approximation is based on the work
of Ale et al.,10 which is a general framework applying
two successive Taylor expansions to express the moment
generating function of the system. We extend this method by
developing closure schemes following either a multivariate
normal, lognormal, or a gamma distribution Ansatz. We
use properties of these three distributions to derive moment
closure formulas to express arbitrary order higher moments
in terms of lower order ones, replacing truncations used in
the original expansion. Our algorithm takes into account the
different levels of the potentially intricate interplay between
species captured by higher order mixed moments. Since the
definition of a multivariate gamma (MVG) distribution is
ambiguous and the existing formulations are not suitable to
model arbitrary systems, we also describe a new multivariate
gamma distribution generalising existing definitions.

The derived formulas are incorporated into the MEA
framework to obtain improved and less costly approximations
of nonlinear dynamics. We demonstrate the power of our
method on two small oscillatory reaction systems, the p53-
Mdm2 negative feedback loop in tumour suppression and
the Hes1 system in embryogenesis and on a complex two-
compartment model of ERK1/2 phosphorylation dynamics.
As the framework, like the original MEA, is completely
automated and developed in a user-friendly manner, it is
suitable for the analysis of any stochastic models without
thorough understanding of the algorithm and also can serve as
a starting point for parameter inference27–30 and model selec-
tion,31,32 distribution reconstruction,33 sensitivity analysis,34

experimental design,35,36 and design of dynamical systems
with desired qualitative37 and quantitative38,39 behaviour.

II. METHODS

A. Moment expansion

In this section, we provide an overview of the MEA
technique and how the computationally complex problem of
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following the evolution of the whole stochastic system is
translated into solving a set of differential equations tracking
the evolution of the moments of the system. For a more detailed
derivation, see Ref. 10.

Let us consider a system of N chemical species
(X1, . . . ,XN) and r reactions, where the lth reaction corre-
sponds to the process

sl,1X1 + · · · + sl,NXN

kl−→ sl,1X1 + · · · + sl,NXN , (1)

which occurs at rate kl and where the number of Xi

molecules changes from si to si. At any given time, the
system is described by the probability mass function P(x; t),
which specifies the probability of observing the abundances
x1, . . . , xN of each species. The time evolution of the system
is then given by the CME,

dP(x; t)
dt

=

r
l=1

P(x − sl; t)al(x − sl) − P(x; t)al(x), (2)

where sl = sl − sl is the vector of stoichiometric coefficients
of the species in reaction l and al is the reaction propensity of
the aforementioned reaction. The moment expansion method10

follows P(x) over time by capturing the time evolution of
its moments instead, based on the time dependent moment
generating function (m(θ,x)) derived from the CME,

dm
dt
=


l


(eθsl − 1)


x

eθxP(x)al(x)

. (3)

The nth raw moment of the system E(Xn) = E(X n1
1 . . . X nN

N )
can be found as the nth order derivative of Eq. (3) with respect
to θ. The expressions obtained this way are evaluated by
expanding al(x) in a Taylor series about the mean giving rise
to a differential equation system containing terms of central
moments, E(X̂n) = E((X1 − µ1)n1 . . . (XN − µN)nN)), with µi
being the mean of the ith species. The relationship between
raw and central moments is formulated as

E(X̂n) =
n1

k1=0

· · ·
nN

kN=0

(n
k

)
(−1)(n−k)µ(n−k)E(Xk), (4)

where

(−1)(n−k) = (−1)(n1−k1) . . . (−1)(nN−kN ),
µ(n−k) = µ

(n1−k1)
1 . . . µ

(nN−kN )
N ,(n

k

)
=

(
n1

k1

)
. . .

(
nN

kN

)
.

We obtain a system of ordinary differential equations for the
time evolution of central moments by applying Eq. (4) to
substitute raw moments with central moments, except for the
mean molecular numbers, µi.

In systems involving nonlinear connections, each central
moment depends on higher order moments, and therefore the
set of differential equations generated by moment expansion
is, in principle, infinite and unsolvable. To obtain a closed
set of equations, we can stop in the evaluation of the Taylor
expansion at a given order of m, i.e., set all higher order terms
to zero, E(X̂n) = 0, if


ni > m. In the following, we refer

to this procedure for substituting (m + 1)th (as well as all
higher) order terms with zeros as zero-closure. An alternative

way to close the equation set is to apply moment closure
techniques which rely on derived expressions for higher order
moments, based on properties of an assumed underlying
distribution.

B. Moment closure techniques

Most well-known and widely used distributions are
completely described by a small set of parameters, meaning
that given the first few moments these parameters can be
calculated and used to determine the whole probability
distribution (including, obviously, all higher order moments).
We use this property to substitute expressions of lower order
moments in place of the (m + i)th (where i ≥ 1) moments
appearing in the set of ODEs generated by the above expansion
method; so in the end we obtain a closed set of differential
equations for the moments,

d
dt
E(X̂m) = f (µ, . . . ,E(X̂m),mck(X)), (5)

where mck(X) denotes the moment closure expression based
on up to kth order central moments of X. In the following,
we derive the expressions for mck(X) based on three
distributions.

We investigate normal, lognormal, and gamma distri-
butions. The first of these is, of course, the most popular
distribution due to its prominent role in the central limit
theorem. The other two distributions are considered for their
asymmetry and restriction to the positive real numbers, both
of which are important features of the systems describing
molecular reactions. Normal and lognormal distributions have
been used successfully to model distributions in biochem-
istry,14,15,20,23 but single cell protein expression levels do
follow a gamma distribution40,41 if considered at the popu-
lation level. Our closure approaches involve two-parameter
distributions, i.e., the first two moments provide a sufficient
description of the distribution. As biological systems usually
contain several species which have strong influence over each
other, we use multivariate definitions of the distributions, in
which the different interaction levels between variables are
captured in the different mixed order moments. In this case,
the two parameters become a vector and a matrix, typically
in the form of, respectively, a mean vector and covariance
matrix.

For each case, we start the derivation by providing a
definition for the corresponding multivariate distribution and
its characteristic parameters. Then, we derive formulas for
all (both non-mixed and mixed) moments of an arbitrary
order m (necessarily, m ≥ 3) in terms of the aforementioned
parameters. Expressions of raw moments are translated into
central moment terms using Eq. (4), whereas for the normal
distribution, we can obtain the central moments directly.
Finally, we give a way to calculate the parameters from
means, variances, and covariances of the species, which are
considered known, as their time evolution has already been
described in the moment expansion step. As a comparison to
the multivariate techniques, we also generate univariate clo-
sures where only expressions for the marginals are generated,
by setting all mixed moments to zero.
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1. Multivariate normal closure

A random vector, X , is said to be N-variate normally
distributed if every linear combination of its components has
a univariate normal distribution. It is described by the density
function,

fX(x) = 1(2π)N |Σ| exp
(
−1

2
(x − µ)TΣ−1(x − µ)

)
, (6)

which reduces to the pdf of the univariate normal distribution,
if Σ ∈ R1×1.

All higher order central moments of the normal distribu-
tion can be calculated using Isserlis’ theorem,42,43

E(X̂m1
1 . . . X̂mN

N ) = 0, if
N
i=1

mi = odd, (7a)

E(X̂m1
1 . . . X̂mN

N ) =

k


(i, j)∈Ik

Σi, j, (7b)

where E(X̂i) denotes central moments (i.e., X̂i = Xi − µi)
and Ik are the sets formed by partitioning the set I
= {1,1, . . . ,1          

m1

, . . . ,N,N, . . . ,N                
mN

} into unordered pairs, with k

being the number of such sets. (We illustrate the above formula
in Appendix A.)

In this case, the necessary parameters µ,Σ can be directly
obtained from the first two central moments of the species
described by the system,

µi = E(Xi),
Σii = Var(Xi),
Σi j = Cov(Xi,X j).

(8)

2. Multivariate lognormal closure

For the univariate case, a random variable X has a
lognormal distribution if its logarithm is normally distributed;
thus, an N-variate lognormally distributed random vector (X)
is characterised by its normal counterpart (Y),

X = exp(Y), (9)

and Y ∼ N (µ,Σ).
All higher order (raw) moments can simply be expressed

in terms of µ and Σ using the formula44

E(Xm) = exp(mTµ +
1
2

mT
Σm), (10)

where m = [m1,m2, . . . ,mN]T and mi ∈ N.
Given our observation of up to second order moments of

the components, the parameters µ and Σ of Y are calculated
as

Σii = ln
(
1 +

Var(Xi)
E(Xi)2

)
,

µi = ln(E(Xi)) − 1
2
Σii,

Σi j = ln *
,

Cov(Xi,X j)
exp(µi + µ j +

1
2 (Σii + Σ j j))

+ 1+
-
.

(11)

3. Multivariate gamma closure

The univariate gamma probability density distribution can
be parametrized by

fX(x; α, β) = 1
Γ(α)βα xα−1 exp(−x/β), (12)

where Γ denotes the gamma function, β is a scale parameter,
and α is a shape parameter. The (raw) moments of a variable
X ∼ Gamma(α, β) are determined by the recurrence relation

E(Xm) = (α)m βm, (13)

where (a)m = (a + m − 1)!/(a − 1)! = a(a + 1) . . . (a +m − 1).
There are several ways to define a MVG distribution

fulfilling the requirement that individual marginals follow a
univariate gamma distribution. Since the sum of two gamma
variables with the same scale parameter will again be gamma
distributed, it is straightforward to obtain a MVG distribution
from linear combination of independent gamma variables.
In this paper, we introduce a new MVG definition similar
to the ones in Mathai45 and Furman.46 Here, in order to
allow for well-behaved covariances, we define the MVG in
terms of linear combinations of gamma random variables;
then, the overlap between the independent gamma components
naturally determines the cross terms in the covariance matrix.

Let Ykl (k = 1 . . . N, l = k . . . N) be independent gamma
variables with shape and scale parameters αkl, βkl. For
convenience, we also introduce extra — but not any more
independent — gamma variates, Yrq (r = 2 . . . N, q = 1 . . . (r
− 1)), such that they equal Ykl if k = q, l = r . We will use these
additional variables in the following to ease the indexing of Ykl
as, for example, Y12 and Y21 refer to the same variable. Then,
X = [X1,X2 . . . XN],

Xi :=
N
k=1

βii
βik

Yik, (14)

will have an N-dimensional gamma distribution, and Xi

∼ Gamma(αi, βi), where

αi =

N
k=1

αik,

βi = βii.

Furthermore, variables Xi and X j will have exactly one
component (Yi j = Yj i) in common to account for their corre-
lations. Consequently, all non-mixed higher order moments
can be calculated using Eq. (13). A closed formula for the
mixed moments arises from the generalisation of an alternate
expression for the non-mixed moment case

E(Xm
i ) = E *

,
*
,

N
k=1

βii
βik

Yik+
-

m

+
-

= E *
,


k

C(m,k)
N
r=1

(
βii
βir

Yir

)kr
+
-

= βm
ii

*
,


k

C(m,k)

r

(αir)kr+
-
, (15)
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where the sum is taken over all combinations of non-negative
integers kr such that they sum up to m, and C(m,k) is the
multinomial coefficient

C(m,k) =
(

m
k1, . . . , kN

)
=

m!
k1! . . . kN!

, (16)

and where we have made use of the independence of Ykl
variables. Similarly, we adapt the vectorised notation of
exponents m used in Eq. (10) and obtain

E(Xm) = βm *
,


k


i

C(mi,k)(αi)k+
-
, (17)

where

βm = β
m1
11 . . . β

mN
NN ,

(αi)k = (αi1)k1 . . . (αiN)kN ,
and the combined product and sum correspond to taking
the product of the expanded Xm1

1 . . . XmN
N terms, with (αi)k

calculated after the αkl = αlk symmetry is taken into account.
We provide an example of the computation of mixed moments
in Appendix B. The power of our MVG definition lies in
the fact that the covariance of any two variables is directly
represented by a single one of the auxiliary parameters, as one
can see from the following computation:

E(XiX j) = βii β j j
*.
,


(k,l),(i, j)

αikα jl + (αi j)2+/
-
,

Cov(Xi,X j) = E(XiX j) − βii β j j
*.
,


k,l

αikα jl
+/
-

= αi j βii β j j,

(18)

where the indices k and l go through all values between
1 and N , except when stated otherwise. One can see that
in order to calculate the final formulas, we need all αkl

values, but only the “diagonal” βkk elements of the scale
parameters. To emphasise the similarity with the previous
closure techniques, we summarise the descriptive parameters
in a vector of scale parameters, β, and a matrix of shape
parameters, A : Akl = αkl. These can be obtained by writing
Eqs. (13) and (18) as

βi = Var(Xi)/E(Xi),
Ai j = Cov(Xi,X j)/(βi β j),
Aii = E(Xi)/βi −


k,i

αik .
(19)

III. RESULTS

In the following examples, we first investigate the
performance of moment closure techniques on two systems
both of which exhibit nonlinear dynamics and show oscillatory
behaviour. Sometimes even a deterministic model suffices to
capture the mean behaviour, but this depends on the parameter
values. There are regimes in the parameter space, where
deterministic and low-order stochastic approximation methods
qualitatively deviate from the true behaviour. In the first two

models, we focus on parameter values taken from this regime
so that we can explore the improvement our method can
provide in the most difficult cases. In our last example, we
consider a system exhibiting less complex — non-oscillatory
— dynamics and demonstrate how our closure techniques can
be applied on systems of many interacting species.

In the examples presented, we stop the Taylor expansion
at order (m + 1) and eliminate the (m + 1)th order terms using
moment closure. Throughout this section, we will use the
following notation: an mth-order moment closure means the
ODE system consists of equations for up to mth order moments
and the closure was applied in order to develop substituting
terms for the (m + 1)th order moments. As expected when only
considering one higher order in the expansion, normal closure
is equivalent to zero closure in all even order closures, as
odd-order terms are always substituted by zeroes. Therefore,
in most of the analysis, we will focus on moment closure
approximations based on moments up to an odd order.

A. P53 system

We first illustrate the properties of our closures applied
together with MEA in the context of the oscillatory p53-Mdm2
system.47 The model consists of three variables x1, x2, and
x3 corresponding to the proteins, p53, Mdm2 precursor, and
Mdm2, respectively; these molecular species are connected
through a feedback loop with nonlinear rate laws. The reaction
network is described by the stoichiometry matrix

S =



1 −1 −1 0 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1



, (20)

and six reaction propensities

a1 = k1, a2 = k2x1,

a3 = k3
x1x3

x1 + k7
, a4 = k4x1,

a5 = k5x2, a6 = k6x3,

(21)

where k1 is the p53 production rate, k2 is the Mdm2-
independent p53 degradation rate, k3 the saturated p53
degradation rate, k7 is the p53 threshold for degradation by
Mdm2, k4 is the p53-dependent Mdm2 production rate, k5 is
the Mdm2 maturation rate, and k6 is the Mdm2 degradation
rate.

Despite the sustained oscillations at the single-cell level,
as different cells go out of phase, dampened oscillations can be
observed in the mean population dynamics. Ale et al.10 have
shown that the deterministic approach and the LNA are not
able to capture this behaviour, and at least 6 moments need to
be included in the standard MEA (equivalent to zero closure).
This suggests that the variance and the skewness are not suffi-
cient for capturing the correct mean, and only expanding the
moment equations further allows us to observe the behaviour
of the system. Here, we use the parameters and initial values
from Ale et al.10 — both already adapted to a stochastic
system, i.e., rates are in 1/s and initial values are dimensionless
quantities representing the total number of molecules in
the system — k = [90,0.002,1.7,1.1,0.93,0.96,0.01], x(0)
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FIG. 1. Study of the p53 system with parameters k= [90,0.002,1.7,0.6,0.96,0.01] and initial conditions x= [70,30,60]. (a) A single exact realisation by
SSA; colours are as in the legend in part (b). (b) Mean behaviour obtained as the average of 10 000 SSA simulations. (c) and (d) Trajectory of the mean and
variance for p53 protein number (x1) calculated by applying third order zero (blue), normal (orange), gamma (green) and lognormal (red) closure. The dashed
black line shows the result of 10 000 SSA runs in correspondence. (e) and (f) Trajectory of the mean and variance of p53 protein number calculated through fifth
order moment closures.

= [70,30,60] and compare our results to 10 000 stochastic
simulations representing an assembly of individual cells
(Figures 1(a) and 1(b)).

In Figs. 1(c) and 1(d), we compare third-order moment
closure approximations (including the corresponding zero
closure) and the true behaviour obtained from averaging
10 000 SSA runs for state x1. For the first quarter of
the trajectory, all closure methods perform similarly, but
after that zero closure methods are not able to capture the

dampening oscillations while all the other closures show a
decrease in amplitude. As expected, normal closure shows
the least pronounced improvement, as the real distribution
for p53 molecules is highly asymmetric, which suggests that
a symmetrical distribution as the Gaussian will not provide
a sufficient description. Gamma and lognormal closure both
perform well, the latter being closest to the true trajectory up
to 25 min, then overestimating the dampening. The quality
of the approximation is quantified as the cumulative squared

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  155.198.12.147 On: Thu, 23 Jun

2016 11:31:12



094107-7 Lakatos et al. J. Chem. Phys. 143, 094107 (2015)

difference between the respective methods and the SSA trajec-
tory. By this measure, the lognormal closure approximates
the true behaviour best, but the error of gamma closure also
appears to level off over time. As was shown previously for
zero closure, the variance is not correctly estimated for fewer
than six moments. Using multivariate lognormal closure, the
qualitative behaviour of the variance of x1 is estimated from
three moments just as well as from six moments in the
zero closure case. On the other hand, assuming a gamma
distribution does only slightly improve the approximation
qualitatively, as no levelling-off is observed over the time-
course considered here. We also extended the simulated time
interval to 160 h and find that the performance of closure
methods does not change; distribution-based closures all reach
the steady state but show varying dampenings in the trajectory,
while zero-closure fails to converge to a steady state and the
variance approximated by this method grows exponentially
instead of levelling-off.

We also investigate fifth order distribution-based closure
methods, which are compared to sixth order zero closure
(Figures 1(e) and 1(f)). All approximation methods overesti-
mate the dampening. Lognormal and gamma closure converge
to the correct final value, while the trajectory predicted by
zero closure for a longer time-period is not constant but an
increasing linear function. On the other hand, the variance
of p53 is approximated very well, especially by lognormal
closure. We also evaluate the difference between multivariate
and univariate fifth-order closures and find that the time
evolution of variances and covariances computed through
univariate techniques diverges more from the multivariate ones
than for third-order closures. This suggests that including
various amounts of 6th order information in the closure
makes a difference in the quality of the approximation, which
is in correspondence with the previous findings showing
that including 6th order moments significantly improves the
estimation of the variance.10

We also find that even order moment closures (except
for zero closure) result in an ODE system which is not
stable enough to be evaluated for the entire time course. We
use several ODE solvers to obtain trajectories, all of which
fail because the system is too stiff. That is, the derivatives
for some of the moment equations become too large and
hence the time step of the solver needs to be reduced below
the minimal allowed step size; however, the time of failure
differs amongst the algorithms solvers used. Zero closure
produces stable and reasonable trajectories, suggesting that
some subsequent moments are so strongly coupled that if we
include only an approximation of odd-order terms, we lose
relevant information providing the stability of the system. We
note that problems with ODE solvers occur frequently with
moment expansion approaches, especially as vast parameter
spaces are explored as is the case in inference; we suspect
that ODEs resulting from MEA (or related approaches) may
require specific solvers.

B. HES1 system

Our second example is the feedback loop of the tran-
scription factor Hes1, involved in the regulation of embryonic

segmentation, which is also described by a 3-variable, 6-
reaction model. The observables are the level of Hes1 mRNA
(x1) and number of Hes1 protein molecules in the cytosol (x2)
and in the nucleus (x3) — not all of these can, however, be
simultaneously measured in vivo. The system is formulated in
terms of stoichiometries and propensities as37

S =



−1 1 0 0 0 0
0 0 −1 1 −1 0
0 0 0 0 1 −1



, (22)

a1 = k1x1, a2 =
1

1 + (x3/k2)k3
,

a3 = k1x2, a4 = k4x1,

a5 = k5x2, a6 = k1x3,

(23)

where k1 is the Hes1 degradation rate that we assume to
be the same for all each species, k2 is the amount of Hes1
protein in the nucleus at half-maximal transcription of the
mRNA, k3 is the Hill coefficient, k4 is the Hes1 mRNA
translation rate, and k5 is the rate of nuclear transport of
Hes1 protein. The parameter values used (in the above order)
are k = [0.03,15,7,0.1,0.008], and we start the simulations
from x(0) = [15,10,6]. As in the case of the p53 system, the
results are compared to the average result of 10 000 SSA runs.
Similarly to the previous example, sustained oscillations are
present in single realisations but appear only transiently in the
mean behaviour and the system soon converges to a steady-
state value (Figures 2(a) and 2(b)).

The very low copy numbers of some species (on the order
of 1-10 molecules) make it harder to follow the evolution of
the probability distribution using moment expansion/closure.
We again find that including information about odd-order
moments without continuing the expansion to the subsequent
even order makes the resulting system unstable; hence, odd
orders for zero closure and even orders for distribution-
based closures fail to produce realistic dynamics, even though
the resulting equations are still numerically tractable. On
the other hand, Fig. 2(c) shows that similarly to the p53
system, third order moment closure methods are able to
capture the characteristic dampening. Although even zero
closure converges to a steady state (4 moments are shown
in comparison, as the third order closure is unstable), only
lognormal closure estimates the steady state value correctly.
As for the variances, values are underestimated by the
approximation methods, but the shape of the curve is captured
in all cases; overall, lognormal and gamma closures perform
best.

We also investigate the difference between applying
univariate and multivariate closure techniques for this system.
In contrast to the p53 system, there is a significant difference
between mean values obtained with or without the inclusion of
mixed moments, as shown for lognormal closure in Fig. 2(e).
In the univariate closure cases, the amplitude of oscillations
reduces only slowly over time, while multivariate closures
converge much faster to the steady state. In this regime, the
dynamics of the Hes1 system are strongly dependent on the
interactions between the three species. Interestingly, closure
not considering mixed moments performs about as well as
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FIG. 2. Study of the Hes1 oscillatory model with parameter k= [0.03,1.5,7,0.1,0.008] and initial conditions x= [15,10,6]. (a) Single SSA simulation of the
system; colours as in part (b). (b) Average of 10 000 SSA realisations. (c) Mean number of Hes1 molecules in cytosol (x2) obtained from SSA simulations (dashed
black line), fourth order zero closure (blue line), and third order normal, gamma, and lognormal moment closures (orange, green, and red lines, respectively).
(d) Variance of nuclear Hes1 molecular number calculated as above. (e) Trajectory of the mean for all variables, obtained by univariate (light dashed lines) and
multivariate (dark solid lines) third order lognormal closure; colours as in part (b).

fourth order zero closure, although the latter contains more
information on fourth order moments.

C. ERK/MEK system

Up to now, we have considered systems with “challeng-
ing” dynamics (see Ref. 37). Here, we now demonstrate
the advantages of our method on a large complex system,
modelling the widely studied mitogen-activated kinase, Erk,

and its cognate kinase, Mek. Mitogen-activated protein kinases
(MAPK) are involved in regulating cellular fates such as prolif-
eration, differentiation, and apoptosis, and therefore many
deterministic and stochastic models are available including
various details of regulatory and regulated interactions. We
choose a very simplified minimal model by Harrington et al.,48

but even this model contains 7 species and 8 reactions. We
reformulate the model in stochastic terms with stoichiometry
matrix
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TABLE I. Variables and parameter values used for the ERK/MEK system.
Variable values represent the number of molecules initially in the system,
while parameter values are given in 1/s (molecules/s).

Variable Value Parameter Value

x1 9240 k1 9.524 · 10−8

x2 1848 k2 8.8 · 10−2

x3 0 k3 3 · 10−1

x4 0 k4 9.524 · 10−8

x5 7392 k5 8.8 · 10−2

x6 0 k6 2 · 10−1

x7 0 k7 1.4 · 10−2

k8 1.4 · 10−2

S =



−1 1 1 −1 1 1 0 0
−1 1 0 0 0 0 1 0
1 −1 −1 0 0 0 0 0
0 0 1 0 0 0 −1 0
0 0 0 −1 1 0 0 1
0 0 0 1 −1 −1 0 0
0 0 0 0 0 1 0 −1



, (24)

and reaction propensities

a1 = k1x1x2, a2 = k2x3, a3 = k3x3,

a4 = k4x1x5, a5 = k5x6, a6 = k6x6,

a7 = k7x4, a8 = k8x7,

(25)

where the variables (xi, i = 1 . . . 7) denote the absolute
number of Mek, Erk1, Mek-Erk1 complex, Erk1p, Erk2,
Mek-Erk2 complex, and Erk2p molecules, respectively. We
adjusted initial conditions and parameters to fit the above sto-
chastic model assuming an average system size of 9.24 · 105

(based on the 1540 µm3 average volume of HeLa cells)
and also lowered molecular concentrations into a regime
where stochastic effects are prevalent; for a list of the values
used in the simulations, see Table I. In our analysis, we
focus on the levels of Erk1p and Erk2p, i.e., phosphorylated

Erk1 and Erk2. In this regime, exact simulation of the
stochastic dynamics is typically computationally prohibitive
and approximate methods are required if we wish to allow for
stochastic dynamics.

We study second order moment closures, compared to
an average of 10 000 SSA runs. We find that in this case
of relatively simple, at most second order rate laws, the
mean behaviour is completely captured by the approximation
methods. Hence, in contrast to the previous two examples,
higher order moments have negligible influence on the
evolution of the mean. As expected, there is no difference
between zero and normal closure, as both methods set all third
order terms to zero, but also the results from gamma closure
are the same. Fig. 3(a) shows the mean ±2 standard deviations
obtained by gamma closure (zero and normal closure would
result in the same figure) as well as a single SSA realisation
for both outputs Erk1p and Erk2p. The average trajectory
of the 10 000 SSA realisations completely agrees with the
approximated means; hence, for the sake of transparency, they
are not shown in Fig. 3(a). The same holds even when we
reduce the system size 100 times, having only a couple of
molecules from some species in the system. On the other hand,
the equation set produced by lognormal closure is numerically
unstable and cannot be evaluated by the ODE solvers. This is
probably due to the distribution of the molecules having a
low skewness compared to its variance; hence, a lognormal
assumption would force moments to take unrealistic values
and this, together with the fact that most variables, especially
x3 and x6 change very rapidly in the first few seconds,
introduces instability into the system. Similarly, variances
produced by closure approximations and calculated from the
SSA runs completely match, although the SSA one already
shows some uncertainty.

A second order approximation of the system consists
of 35 equations, each with between 5 and 20 terms. Third
order approximations would produce an equation set of 118
variables with more complex (around 30 terms) right-hand
side expressions, that is considerably slower to simulate (not
to mention the original costs of determining the equations —

FIG. 3. Study of the simplified Erk/Mek model, parameters, and initial conditions as in Table I. (a) Mean trajectory (solid line) of the two output variables
(Erk1p and Erk2p) ±2 standard deviations (shaded areas) calculated by second order gamma closure and a single SSA realisation (black dashed lines). (b)
Approximations of the third central moment of Erk1p obtained by full third order zero closure (blue) and applying gamma (green), and lognormal (red) closure
formulas based on the full second order moment closure. Normal closure is not shown as it is 0 for the whole time-course.
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which is here done automatically using computer algebra);
additionally, the risk of introducing numerical errors is also
higher. However, deriving third order moments from SSA
simulations is not feasible as at least a million simulations
would be required to be able to follow the evolution of
such moments reliably. In such situations, the formulas used
during approximation to close the moment equations can be
explicitly applied to estimate moments of higher orders based
on available moment values. In Figure 3(b), we plot the third
moment of Erk1p calculated from Equations (10) and (17) to
obtain the necessary second order moments for the formulas.
Since there are very strong fluctuations present in the SSA
estimation, we also compare the results to the trajectory
obtained by the third order zero closure approximation.
Lognormal closure overestimates the actual moment by a
factor of three, which supports our previous observation that
the instability of lognormal closure arises because this closure
Ansatz assumes a more highly skewed distribution given the
mean and variance/covariance values. Gamma closure also
overestimates the moment, but qualitatively follows the change
in skewness, hence provides more information on the actual
time evolution than normal closure, which is equivalent to
assuming constant zero third order moments. Some results
suggest that if moment closures can be evaluated by their
performance — or stability — on estimating the mean, an
improved prediction can be obtained by taking a consensus of
the “accepted” third order predictors, e.g., in Fig. 3(a), we see
that both gamma and normal closure perfectly match the mean,
and the average of trajectories derived from gamma and normal
closure formulas would give a more precise approximation of
the actual third order moment.

IV. CONCLUSION

In this paper, we have introduced a general moment
closure approximation technique based on n-dimensional
multivariate forms of normal, lognormal, and gamma distri-
butions. We have derived expressions that automatically
determine higher order moments in terms of means, variances,
and covariances, which can be used in any application
concerning summary statistics of dependent random variables.
Here, we have combined the formulas with a general moment
expansion approach to follow the time evolution of complex
nonlinear systems and shown that moment closure methods are
able to approximate the mean behaviour and higher moments
in the regime of 5-100 molecules, where many other methods
tend to fail.5

With recent developments in single cell recording tech-
niques, our approach offers many benefits and allows us to
make better use of the information in such experimental
data.49,50 Since our closure-based approximation method
transforms the stochastic problem into a set of ODEs,
where moments of the probability distribution are treated
as new variables, the approach can be directly used in
many applications designed for deterministic systems. For
example, standard inference schemes28 can be used to estimate
parameters of stochastic systems via conditioning not only
on the mean but also variance, skewness, etc. We have
shown that the use of moment closure formulas instead of

truncation considerably reduces the number of moments
required to approximate the correct mean behaviour, while
going to the same order improves the estimation of higher
moments. The reduced system size can be beneficial in most
inference tasks, as these algorithms involve evaluating the
system for thousands of parameter sets. A related further
application of our framework is in the field of experimental and
control design.35,51,52 This field offers numerous mathematical
and engineering tools developed for differential equation
systems, which applied to a stochastic model followed with
our algorithm could lead to automatic, in silico experimental
design for biochemical systems, for example, determining the
optimal input in order to drive the system into a state with
reduced variability. Furthermore, combined with moment-
based distribution reconstruction techniques,53,54 our method
can provide a way to access the whole distribution of
the system without analytically solving the CME or costly
SSA simulations. Since parametric sensitivities are easily
obtained from our analysis (see, e.g., Refs. 10 and 34), our
framework can also be used to study parameter dependence
of the system’s evolutions, for example, through deriving
Waddington landscapes55 from the probability distribution.56

However, note that sometimes high order moments are needed
for the unique reconstruction of the distribution, and the overall
cost of our algorithm and the reconstruction technique might
exceed that of the generation of SSA trajectories.

Our closure methods rely on the assumption that the
observed species follow a specific joint distribution; therefore,
choosing the best closure technique can be problematic and
one has to be aware of the limitations arising from the chosen
method. For some systems, prior knowledge might help in
determining the best distribution to model the species,41 but
usually we are not so fortunate and can only base our decision
on very general properties. For example, normal closure can
lead to errors or failure in systems where the skewness of the
probability distribution over states is significantly different
from zero. Both the p53 and Hes1 systems exhibit such
dynamics and normal closure performs much worse than
the two asymmetric distributions. In light of our analyses,
it appears that lognormal closure should be more successful
in cases with highly skewed distributions. In cases where the
lognormal Ansatz fails, gamma closure might still be applied,
but due to positiveness of the univariate gamma distribution
higher order mixed moments should all be positive, and
hence negatively correlated variables cannot be modelled with
this Ansatz. However, our implementation of a new MVG
distribution allows the system to assign negative values to
these moments based on the corresponding covariances. In
addition, the current algorithm can be refined by including
more moments in the calculation of closure expressions.
In cases where the actual distribution cannot be described
by any of the distributions considered here, an improved
approximation might be obtained by deriving the parameters
from different pairs of lower order moments — e.g., by
expressing m and Σ of a lognormal distribution in terms of
mean and skewness as well as mean and variance — and using
a weighted average of the results. However, this method would
either require tighter restrictions on the closure order, m, or
considerable computational time.
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In case we have no prior information about the distribution
of species, a possible way of finding the optimal closure
is to calculate all three second order approximations and
compare their stability,57 as incorrect assumptions can lead to
unstable systems, such as in the case of the Erk/Mek network.
Moreover, if experimental data or data from a couple of SSA
simulations are available, the reliability of each closure can
be estimated, similar to the estimation of necessary order
moments in Ale et al.10 If the system size allows comparing
full third order moments (obtained from third order closure)
to the ones calculated by the respective assumptions, this
computation can also help in deciding which distribution
fits the data best. After the distribution assumptions are
evaluated with one of the above approaches, the optimal or
a mixture of reasonable closures can be used to model the
distribution of the system. For example, closure formulas
can be used as an estimator of higher order moments even
when further expanding the approximation is not feasible
or efficient. However, although the three included cases can
fit a very broad range of possible molecular distributions,
note that there are still some examples which cannot be
well approximated, for example, bistable systems and other
multimodal distributions. Investigating further distributions,
such as Poisson or (negative) binomial distribution, can also
improve the approximation as they have been shown to have
relevance in some biochemical models, but they lack a general
multivariate formulation for which closure formulas could be
derived automatically for an arbitrary system.

For some such systems, general criteria have recently been
developed57,58 that allow us to determine whether moment
closure approximations can be usefully applied. Whenever
nonlinear dynamics and noise interact, it poses a challenge
for computationally convenient approximations;59 approaches
such as the one introduced here can easily improve the analysis
of such systems compared, for example, to the LNA, but many
biologically important processes will defy these attempts, and
for these there may be no alternative to costly SSA simulations.
Statistical inference is an area in which approximations could
have a potentially important role, since even approximations
to the true pdf could greatly help when trying to define
(approximate) likelihood functions.6,10,60,61
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APPENDIX A: EXAMPLE OF ISSERLIS’ THEOREM

To illustrate how Isserlis’ theorem provides a way to
express any even ordered moments of a normally distributed
N-dimensional variable, consider the fourth order central
moment E(X̂2

1 X̂2X̂3). First, we need every possible partitioning
of the set {1,1,2,3} into unordered pairs, which in this case
will give us three sets composed of two pairs,

{(1,1); (2,3)}; {(1,2); (1,3)}; {(1,3); (1,2)}.
Then, in Eq. (7b), for each set we generate the productΣi j · Σlk,
where the indices are determined by the pairs in the set, and
take the sum of these products to obtain the desired central
moment,

E(X̂2
1 X̂2X̂3) = Σ11Σ23 + Σ12Σ13 + Σ13Σ12.

APPENDIX B: EXAMPLE OF MIXED MOMENT GAMMA
CLOSURE

We show how the steps in the calculation of the compact
formula in Eq. (17) follow each other on the raw mixed
moment E(X2

1 X2) of a system consisted only of these variables
(N = 2). We first introduce the auxiliary independent gamma
variates Y11, Y12, Y21, and Y22, where Y12 = Y21. As one substitutes
Xi with the corresponding variables using Eq. (14), the studied
moment takes the form

E(X2
1 X2) = E *

,

(
β11

β11
Y11 +

β11

β12
Y12

)2 (
β22

β21
Y21 + Y22

)
+
-
.

The first step is to expand the product within the expectation

E(X2
1 X2) = E

(
β22

β21
Y 2

11Y21 + 2
β11β22

β12β21
Y11Y12Y21

+
β2

11β22

β2
12β21

Y 2
12Y21 + Y 2

11Y22

+ 2
β11

β12
Y11Y12Y22 +

β2
11

β2
12

Y 2
12Y22+

-
,

then apply the equality Y12 = Y21 (and hence β12 = β21). As all
Y s are independent, we can take the individual expectation of
each term in each product, using Eq. (13), so that the expected
value of Y 3

12 is (α12)3β3
12, and so on. For example, the third

term of the above expression becomes

E *
,

β2
11β22

β2
12β21

Y 2
12Y21+

-
=

β2
11β22

β3
12

· (α12)3β3
12 = (α12)3β2

11β22.

As can be seen on the above example, the powers individual
Y s are on and the coefficients of the terms in the expanded sum
determine the α terms and the final form of the raw moment
will be a sum of products of αs, summarised in the combined
sum and product of Eq. (17),

E(X2
1 X2) =

((α11)2α12 + α11(α12)2 + 2(α12)3
+ (α11)2α22 + 2α11α12α22 + (α12)2α22

)
β2

11β22.

APPENDIX C: EXAMPLES OF MOMENT CLOSURE
FORMULAS

We illustrate the closure formulas derived in Section II
on an example taken from the third order closure schemes,
i.e., when fourth order moments are approximated based on
the assumed distribution. Let us consider a system with at least
two variables and investigate how E(X̂2

1 X̂2
2) can be expressed

in terms of lower order moments. This expression does not
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depend on any other variables; hence, regardless of the total
number of species in the system, the same formula can be
substituted into Eq. (5) and applied in all considered systems.

Truncation (zero-closure) means setting all higher order
moments to zero, while in all univariate closures mixed
moments become zero similarly; therefore, in both cases,

E(X̂2
1 X̂2

2) = 0.

Assuming a normal distribution and applying the expres-
sions derived in Eqs. (7) and (8), we obtain

E(X̂2
1 X̂2

2) = 2σ1,2 + σ1σ2,

where

σ1,2 = Cov(X1,X2),
σ1 = Var(X1),
σ2 = Var(X2).

If, on the other hand, we assume a lognormal distribution
and apply our formulas accordingly, the above moment
becomes

E(X̂2
1 X̂2

2) = µ2
1µ

2
2(σ1 + σ2 − 1) + 4µ1µ2(σ1,2 + µ1µ2)

− 2 *
,

σ1

µ2
1

+
σ2

µ2
2

+ 2+
-
(σ1,2 + µ1µ2)2

+
(σ1,2 + µ1µ2)4(µ2

1 + σ1)(µ2
2 + σ2)

µ4
1µ

4
2

,

where σ1,σ2,σ1,2 are as before and µ1, µ2 denote the mean of
X1 and X2.

Finally, using the above notation for means, variances, and
covariance, in gamma closure, the expected value of X̂2

1 X̂2
2 is

substituted with

E(X̂2
1 X̂2

2) = 2σ2
1,2 + σ1σ2 +

6σ1σ2σ1,2

µ1µ2
.
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