122 research outputs found

    Musik als Sinnmatrize?

    Get PDF
    Aufbauend auf einem kybernetischen – systemtheoretischen Kommunikationsbegriff geht diese Arbeit der Frage nach, ob sich das Phänomen Musik für die Kommunikationswissenschaften tatsächlich nur über Umwege, wie die Beschäftigung mit Musik in der Werbung und im Film, oder die Betrachtung des Zusammenhangs von Musik und Image, bzw. Szenebildung, oder des Musikjournalismus erschließt. Alternativ zu diesen „klassischen“ Forschungsgebieten, wird hier der Blick auf die intrinsischen Eigenschaften der Musik und dem kommunikativen Umgang der Menschen mit ihr zugewendet. Es wird geklärt, was Kommunikation und Sinn im Verständnis der von Niklas Luhmann entwickelten Systemtheorie bedeuten, und wie Kunst (spezifisch Musik), in diesem Zusammenhang als ein Medium symbolischer Kommunikation funktioniert. Anhand einer Analyse von Ergebnissen aus der Neurologie und Kognitionswissenschaft, der Sozialpsychologie, der Anthropologie und den Kulturwissenschaften, wird untersucht, ob, und inwiefern, Musik selbst als Sinnmatrize – also ein von Kulturprogrammen und Wirklichkeitsmodellen dynamisch formbares Bedeutungsschema – als Orientierungs-Orientierung zur Konstruktion kommunikativ geteilter Wirklichkeit beiträgt. Aufbauend auf den Erkenntnissen, dass die Wirklichkeit das Produkt von auf kommunikativer Interaktion aufbauender, individueller Wirklichkeitskonstruktion ist und Menschen im sozialen Kontext gar nicht nicht kommunizieren können, sowie, dass Kommunikation, wie auch Musik, anthropologische Grundkonstanten darstellen, zeigt sich nicht zuletzt in der Betrachtung der kulturbildenden Eigenschaften von Kommunikation und Musik – als Medien und in Medien –, dass sich Kommunikation und Musik in der Sinnstiftung komplementär ergänzen. Für die Kommunikationswissenschaften entsteht daraus die Herausforderung sich mit Musik auf neuer Ebene zu beschäftigen. Denn im Gesamtkontext Kultur, als kommunikativem Phänomen, nimmt Musik eine Rolle ein, die die verbale Kommunikation um die Möglichkeit das Unaussprechliche zu kommunizieren ergänzt, die von Menschen für Menschen geschaffen wird und die in Gesellschaften, wie Individuen Sinn stiftet.Building on a cybernetic – and system theory concept of communication, this paper pursues the question, whether music as a cultural phenomenon can be a topic for the communication sciences. These usually treat music only by looking at concepts related to it, like music journalism, the use of music in advertisements or films, or in the context of music and the creation of image. In trying to follow an alternative path to these “classic” concepts of studies, the focus is shifted to music’s intrinsic properties and to the way people make use of music as a means of communication. Firstly, the model of communication as developed by Niklas Luhmann in his theory of social systems is examined, as well as the question of how music (or broadly speaking: art) functions as a means of social symbolic communications, within this theoretical framework. This is then tested against an analysis of findings from the neurological and cognitive sciences, social psychology, anthropology and cultural sciences. This serves to show in how far music can act as a culturally formed matrix of meaning, which helps to orientate the individual in his or her construction of socially shared reality. Following the premise, that reality is a construct of the individual, which is formed and informed by communicative interaction in the realm of society, and that it is impossible to not communicate, it is shown how communication and music share their nature as being an anthropological constant, and that they both help to constitute culture. They are complementary elements in their function to create meaning. This challenges the communication sciences to take a new viewpoint on music. For in culture, as a phenomenon constituted by communication, music takes on the role of being a means to communicate the unspeakable, and thus complements verbal interaction. Music is made by humans for humans and creates meaning, both, in societies, as in the individual

    Prospective cohort study of radiotherapy with concomitant and adjuvant temozolomide chemotherapy for glioblastoma patients with no or minimal residual enhancing tumor load after surgery

    Get PDF
    Survival of glioblastoma patients has been linked to the completeness of surgical resection. Available data, however, were generated with adjuvant radiotherapy. Data confirming that extensive cytoreduction remains beneficial to patients treated with the current standard, concomitant temozolomide radiochemotherapy, are limited. We therefore analyzed the efficacy of radiochemotherapy for patients with little or no residual tumor after surgery. In this prospective, non-interventional multicenter cohort study, entry criteria were histological diagnosis of glioblastoma, small enhancing or no residual tumor on post-operative MRI, and intended temozolomide radiochemotherapy. The primary study objective was progression-free survival; secondary study objectives were survival and toxicity. Furthermore, the prognostic value of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation was investigated in a subgroup of patients. One-hundred and eighty patients were enrolled. Fourteen were excluded by patient request or failure to initiate radiochemotherapy. Twenty-three patients had non-evaluable post-operative imaging. Thus, 143 patients qualified for analysis, with 107 patients having residual tumor diameters ≤1.5 cm. Median follow-up was 24.0 months. Median survival or patients without residual enhancing tumor exceeded the follow-up period. Median survival was 16.9 months for 32 patients with residual tumor diameters >0 to ≤1.5 cm (95% CI: 13.3–20.5, p = 0.039), and 13.9 months (10.3–17.5, overall p < 0.001) for 36 patients with residual tumor diameters >1.5 cm. Patient age at diagnosis and extent of resection were independently associated with survival. Patients with MGMT promoter methylated tumors and complete resection made the best prognosis. Completeness of resection acts synergistically with concomitant and adjuvant radiochemotherapy, especially in patients with MGMT promoter methylation

    Testing the applicability and performance of Auto ML for potential applications in diagnostic neuroradiology.

    Get PDF
    To investigate the applicability and performance of automated machine learning (AutoML) for potential applications in diagnostic neuroradiology. In the medical sector, there is a rapidly growing demand for machine learning methods, but only a limited number of corresponding experts. The comparatively simple handling of AutoML should enable even non-experts to develop adequate machine learning models with manageable effort. We aim to investigate the feasibility as well as the advantages and disadvantages of developing AutoML models compared to developing conventional machine learning models. We discuss the results in relation to a concrete example of a medical prediction application. In this retrospective IRB-approved study, a cohort of 107 patients who underwent gross total meningioma resection and a second cohort of 31 patients who underwent subtotal resection were included. Image segmentation of the contrast enhancing parts of the tumor was performed semi-automatically using the open-source software platform 3D Slicer. A total of 107 radiomic features were extracted by hand-delineated regions of interest from the pre-treatment MRI images of each patient. Within the AutoML approach, 20 different machine learning algorithms were trained and tested simultaneously. For comparison, a neural network and different conventional machine learning algorithms were trained and tested. With respect to the exemplary medical prediction application used in this study to evaluate the performance of Auto ML, namely the pre-treatment prediction of the achievable resection status of meningioma, AutoML achieved remarkable performance nearly equivalent to that of a feed-forward neural network with a single hidden layer. However, in the clinical case study considered here, logistic regression outperformed the AutoML algorithm. Using independent test data, we observed the following classification results (AutoML/neural network/logistic regression): mean area under the curve = 0.849/0.879/0.900, mean accuracy = 0.821/0.839/0.881, mean kappa = 0.465/0.491/0.644, mean sensitivity = 0.578/0.577/0.692 and mean specificity = 0.891/0.914/0.936. The results obtained with AutoML are therefore very promising. However, the AutoML models in our study did not yet show the corresponding performance of the best models obtained with conventional machine learning methods. While AutoML may facilitate and simplify the task of training and testing machine learning algorithms as applied in the field of neuroradiology and medical imaging, a considerable amount of expert knowledge may still be needed to develop models with the highest possible discriminatory power for diagnostic neuroradiology

    Management science in the era of smart consumer products: Challenges and research perspectives

    Get PDF
    Dawid H, Decker R, Hermann T, et al. Management science in the era of smart consumer products: Challenges and research perspectives. Central European Journal of Operations Research. 2017;25(1):203-230.Smart products not only provide novel functionalities, but also may establish new business models, markets, or distribution channels, strengthen relationships with consumers, and/or add smart remote services. While many technical obstacles of such products have already been overcome, the broad market dissemination of smart products still poses some vital managerial challenges for decision makers. In this paper, we outline the technical potential and future trends of smart consumer products, discuss economic challenges in four scopes, namely, preference-based new product development, market analysis, supply chain design, and industry development, and, in particular, we highlight research perspectives for management science in this promising field

    Development of a Novel Passive Monitoring Technique to Showcase the 3D Distribution of Tritiated Water (HTO) Vapor in Indoor Air of a Nuclear Facility

    Get PDF
    Tritiated water (HTO), a ubiquitous byproduct of the nuclear industry, is a radioactive contaminant of major concern for environmental authorities. Although understanding spatiotemporal heterogeneity of airborne HTO vapor holds great importance for radiological safety as well as diagnosing a reactor’s status, comprehensive HTO distribution dynamics inside nuclear facilities has not been studied routinely yet due to a lack of appropriate monitoring techniques. For current systems, it is difficult to simultaneously achieve high representativeness, sensitivity, and spatial resolution. Here, we developed a passive monitoring scheme, including a newly designed passive sampler and a tailored analytical protocol for the first comprehensive 3D distribution characterization of HTO inside a nuclear reactor facility. The technique enables linear sampling in any environment at a one-day resolution and simultaneous preparation of hundreds of samples within 1 day. Validation experiments confirmed the method’s good metrological properties and sensitivity to the HTO’s spatial dynamics. The air in TU Wien’s reactor hall exhibits a range of 3H concentrations from 75-946 mBq m-3 in the entire 3D matrix. The HTO release rate estimated by the mass-balance model (3199 ± 306 Bq h-1) matches the theoretical calculation (2947 ± 254 Bq h-1), suggesting evaporation as the dominant HTO source in the hall. The proposed method provides reliable and quality-controlled 3D monitoring at low cost, which can be adopted not only for HTO and may also inspire monitoring schemes of other indoor pollutants

    Shifting cancer care towards Multidisciplinarity: the cancer center certification program of the German cancer society

    Get PDF
    Background: Over the last decades numerous initiatives have been set up that aim at translating the best available medical knowledge and treatment into clinical practice. The inherent complexity of the programs and discrepancies in the terminology used make it difficult to appreciate each of them distinctly and compare their specific strengths and weaknesses. To allow comparison and stimulate dialogue between different programs, we in this paper provide an overview of the German Cancer Society certification program for multidisciplinary cancer centers that was established in 2003. Main body: In the early 2000s the German Cancer Society assessed the available information on quality of cancer care in Germany and concluded that there was a definite need for a comprehensive, transparent and evidence-based system of quality assessment and control. This prompted the development and implementation of a voluntary cancer center certification program that was promoted by scientific societies, health-care providers, and patient advocacy groups and based on guidelines of the highest quality level (S3). The certification system structures the entire process of care from prevention to screening and multidisciplinary treatment of cancer and places multidisciplinary teams at the heart of this program. Within each network of providers, the quality of care is documented using tumor-specific quality indicators. The system started with breast cancer centers in 2003 and colorectal cancer centers in 2006. In 2017, certification systems are established for the majority of cancers. Here we describe the rationale behind the certification program, its history, the development of the certification requirements, the process of data collection, and the certification process as an example for the successful implementation of a voluntary but powerful system to ensure and improve quality of cancer care. Conclusion: Since 2003, over 1 million patients had their primary tumors treated in a certified center. There are now over 1200 sites for different tumor entities in four countries that have been certified in accordance with the program and transparently report their results from multidisciplinary treatment for a substantial proportion of cancers. This led to a fundamental change in the structure of cancer care in Germany and neighboring countries within one decade

    The relationship between glucose and the liver-alpha cell axis – A systematic review

    Get PDF
    Until recently, glucagon was considered a mere antagonist to insulin, protecting the body from hypoglycemia. This notion changed with the discovery of the liver-alpha cell axis (LACA) as a feedback loop. The LACA describes how glucagon secretion and pancreatic alpha cell proliferation are stimulated by circulating amino acids. Glucagon in turn leads to an upregulation of amino acid metabolism and ureagenesis in the liver. Several increasingly common diseases (e.g., non-alcoholic fatty liver disease, type 2 diabetes, obesity) disrupt this feedback loop. It is important for clinicians and researchers alike to understand the liver-alpha cell axis and the metabolic sequelae of these diseases. While most of previous studies have focused on fasting concentrations of glucagon and amino acids, there is limited knowledge of their dynamics after glucose administration. The authors of this systematic review applied PRISMA guidelines and conducted PubMed searches to provide results of 8078 articles (screened and if relevant, studied in full). This systematic review aims to provide better insight into the LACA and its mediators (amino acids and glucagon), focusing on the relationship between glucose and the LACA in adult and pediatric subjects

    TERT promoter mutation and chromosome 6 loss define a high-risk subtype of ependymoma evolving from posterior fossa subependymoma

    Get PDF
    Subependymomas are benign tumors characteristically encountered in the posterior fossa of adults that show distinct epigenetic profiles assigned to the molecular group "subependymoma, posterior fossa" (PFSE) of the recently established DNA methylation-based classification of central nervous system tumors. In contrast, most posterior fossa ependymomas exhibit a more aggressive biological behavior and are allocated to the molecular subgroups PFA or PFB. A subset of ependymomas shows epigenetic similarities with subependymomas, but the precise biology of these tumors and their potential relationships remain unknown. We therefore set out to characterize epigenetic traits, mutational profiles, and clinical outcomes of 50 posterior fossa ependymal tumors of the PFSE group. On histo-morphology, these tumors comprised 12 ependymomas, 14 subependymomas and 24 tumors with mixed ependymoma-subependymoma morphology. Mixed ependymoma-subependymoma tumors varied in their extent of ependymoma differentiation (2-95%) but consistently exhibited global epigenetic profiles of the PFSE group. Selective methylome analysis of microdissected tumor components revealed CpG signatures in mixed tumors that coalesce with their pure counterparts. Loss of chr6 (20/50 cases), as well as TERT mutations (21/50 cases), were frequent events enriched in tumors with pure ependymoma morphology (p < 0.001) and confined to areas with ependymoma differentiation in mixed tumors. Clinically, pure ependymoma phenotype, chr6 loss, and TERT mutations were associated with shorter progression-free survival (each p < 0.001). In conclusion, our results suggest that subependymomas may acquire genetic and epigenetic changes throughout tumor evolution giving rise to subclones with ependymoma morphology (resulting in mixed tumors) that eventually overpopulate the subependymoma component (pure PFSE ependymomas)

    BCNU for recurrent glioblastoma multiforme: efficacy, toxicity and prognostic factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prognosis for patients with recurrent glioblastoma is still poor with a median survival between 3 and 6 months. Reports about the application of carmustine (BCNU), one of the standard chemotherapeutic drugs in the treatment of newly diagnosed glioblastoma, in the recurrent situation are rare.</p> <p>Methods</p> <p>We performed a retrospective analysis of 35 patients with recurrent or progressive glioblastoma treated with 80 mg/m<sup>2 </sup>BCNU on days 1 on 3 intravenously at our department for efficacy, toxicity and prognostic factors. Progression free survival and overall survival were estimated by the Kaplan-Meier method. The influence of age, Karnofsky performance status (KPS), tumor burden, pretreatment with temozolomide (TMZ), type of surgery for initial diagnosis and number of previous relapses on outcome was analyzed in a proportional hazards regression model.</p> <p>Results</p> <p>The median age of the group was 53 years, median KPS was 70. Median progression free survival was 11 weeks (95% confidence interval [CI]: 8-15), median overall survival 22 weeks (95% CI: 18-27). The rate of adverse events, especially hematological toxicity, is relatively high, and in 3 patients treatment had to be terminated due to adverse events (one pulmonary embolism, one pulmonary fibrosis, and one severe bone marrow suppression). No influence of age, KPS, tumor burden, pre-treatment with TMZ and number of previous relapses on outcome could be demonstrated, while gross total resection prior to recurrence showed a borderline statistically significant negative impact on PFS and OS. These data compare well with historical survival figures. However prospective randomized studies are needed to evaluate BCNU efficacy against newer drugs like bevacizumab or the intensified temozolomide regime (one week on/one week off).</p> <p>Conclusion</p> <p>In summary, BCNU treatment appears to be a valuable therapeutic option for recurrent glioblastomas, where no other validated radio- and/or chemotherapy are available.</p

    Specific Visualization of Glioma Cells in Living Low-Grade Tumor Tissue

    Get PDF
    BACKGROUND: The current therapy of malignant gliomas is based on surgical resection, radio-chemotherapy and chemotherapy. Recent retrospective case-series have highlighted the significance of the extent of resection as a prognostic factor predicting the course of the disease. Complete resection in low-grade gliomas that show no MRI-enhanced images are especially difficult. The aim in this study was to develop a robust, specific, new fluorescent probe for glioma cells that is easy to apply to live tumor biopsies and could identify tumor cells from normal brain cells at all levels of magnification. METHODOLOGY/PRINCIPAL FINDINGS: In this investigation we employed brightly fluorescent, photostable quantum dots (QDs) to specifically target epidermal growth factor receptor (EGFR) that is upregulated in many gliomas. Living glioma and normal cells or tissue biopsies were incubated with QDs coupled to EGF and/or monoclonal antibodies against EGFR for 30 minutes, washed and imaged. The data include results from cell-culture, animal model and ex vivo human tumor biopsies of both low-grade and high-grade gliomas and show high probe specificity. Tumor cells could be visualized from the macroscopic to single cell level with contrast ratios as high as 1000: 1 compared to normal brain tissue. CONCLUSIONS/SIGNIFICANCE: The ability of the targeted probes to clearly distinguish tumor cells in low-grade tumor biopsies, where no enhanced MRI image was obtained, demonstrates the great potential of the method. We propose that future application of specifically targeted fluorescent particles during surgery could allow intraoperative guidance for the removal of residual tumor cells from the resection cavity and thus increase patient survival
    corecore