168 research outputs found

    POLDER observations of cloud bidirectional reflectances compared to a plane-parallel model using the International Satellite Cloud Climatology Project cloud phase functions

    No full text
    International audienceThis study investigates the validity of the plane-parallel cloud model and in addition the suitability of water droplet and ice polycrystal phase functions for stratocumulus and cirrus clouds, respectively. To do that, we take advantage of the multidirectional viewing capability of the Polarization and Directionality of the Earth's Reflectances (POLDER) instrument which allows us to characterize the anisotropy of the reflected radiation field. We focus on the analysis of airborne-POLDER data acquired over stratocumulus and cirrus clouds during two selected flights (on April 17 and April 18, 1994) of the European Cloud and Radiation Experiment (EUCREX'94) campaign. The bidirectional reflectances measured in the 0.86 μm channel are compared to plane-parallel cloud simulations computed with the microphysical models used by the International Satellite Cloud Climatology Project (ISCCP). Although clouds are not homogeneous plane-parallel layers, the extended cloud layers under study appear to act, on average, as a homogeneous plane-parallel layer. The standard water droplet model (with an effective radius of 10 μm) used in the ISCCP analysis seems to be suitable for stratocumulus clouds. The relative root-mean-square difference between the observed bidirectional reflectances and the model is only 2%. For cirrus clouds, the water droplet cloud model is definitely inadequate since the rms difference rises to 9%; when the ice polycrystal model chosen for the reanalysis of ISCCP data is used instead, the rms difference is reduced to 3%

    RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription

    Get PDF
    Mechanisms governing the distinct temporal dynamics that characterize post-natal angiogenesis and lymphangiogenesis elicited by cutaneous wounds and inflammation remain unclear. RhoB, a stress-induced small GTPase, modulates cellular responses to growth factors, genotoxic stress and neoplastic transformation. Here we show, using RhoB null mice, that loss of RhoB decreases pathological angiogenesis in the ischaemic retina and reduces angiogenesis in response to cutaneous wounding, but enhances lymphangiogenesis following both dermal wounding and inflammatory challenge. We link these unique and opposing roles of RhoB in blood versus lymphatic vasculatures to the RhoB-mediated differential regulation of sprouting and proliferation in primary human blood versus lymphatic endothelial cells. We demonstrate that nuclear RhoB-GTP controls expression of distinct gene sets in each endothelial lineage by regulating VEZF1-mediated transcription. Finally, we identify a small-molecule inhibitor of VEZF1–DNA interaction that recapitulates RhoB loss in ischaemic retinopathy. Our findings establish the first intra-endothelial molecular pathway governing the phased response of angiogenesis and lymphangiogenesis following injury

    Radioactive Phosphorylation of Alcohols to Monitor Biocatalytic Diels-Alder Reactions

    Get PDF
    Nature has efficiently adopted phosphorylation for numerous biological key processes, spanning from cell signaling to energy storage and transmission. For the bioorganic chemist the number of possible ways to attach a single phosphate for radioactive labeling is surprisingly small. Here we describe a very simple and fast one-pot synthesis to phosphorylate an alcohol with phosphoric acid using trichloroacetonitrile as activating agent. Using this procedure, we efficiently attached the radioactive phosphorus isotope 32P to an anthracene diene, which is a substrate for the Diels-Alderase ribozyme—an RNA sequence that catalyzes the eponymous reaction. We used the 32P-substrate for the measurement of RNA-catalyzed reaction kinetics of several dye-labeled ribozyme variants for which precise optical activity determination (UV/vis, fluorescence) failed due to interference of the attached dyes. The reaction kinetics were analyzed by thin-layer chromatographic separation of the 32P-labeled reaction components and densitometric analysis of the substrate and product radioactivities, thereby allowing iterative optimization of the dye positions for future single-molecule studies. The phosphorylation strategy with trichloroacetonitrile may be applicable for labeling numerous other compounds that contain alcoholic hydroxyl groups

    De novo and inherited mutations in the X-linked gene CLCN4 are associated with syndromic intellectual disability and behavior and seizure disorders in males and females

    Get PDF
    Variants in CLCN4, which encodes the chloride/hydrogen ion exchanger CIC-4 prominently expressed in brain, were recently described to cause X-linked intellectual disability and epilepsy. We present detailed phenotypic information on 52 individuals from 16 families with CLCN4-related disorder: 5 affected females and 2 affected males with a de novo variant in CLCN4 (6 individuals previously unreported) and 27 affected males, 3 affected females and 15 asymptomatic female carriers from 9 families with inherited CLCN4 variants (4 families previously unreported). Intellectual disability ranged from borderline to profound. Behavioral and psychiatric disorders were common in both child- and adulthood, and included autistic features, mood disorders, obsessive-compulsive behaviors and hetero- and autoaggression. Epilepsy was common, with severity ranging from epileptic encephalopathy to well-controlled seizures. Several affected individuals showed white matter changes on cerebral neuroimaging and progressive neurological symptoms, including movement disorders and spasticity. Heterozygous females can be as severely affected as males. The variability of symptoms in females is not correlated with the X inactivation pattern studied in their blood. The mutation spectrum includes frameshift, missense and splice site variants and one single-exon deletion. All missense variants were predicted to affect CLCN4's function based on in silico tools and either segregated with the phenotype in the family or were de novo. Pathogenicity of all previously unreported missense variants was further supported by electrophysiological studies in Xenopus laevis oocytes. We compare CLCN4-related disorder with conditions related to dysfunction of other members of the CLC family.E.E. Palmer ... E. Haan ... J. Nicholl, M. Shaw ... J. Gecz ... et al

    X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    Get PDF
    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases

    Hochauflösende Elektronenenergieverlustspektroskopie an ultradünnen Eisenfilmen und der wasserstoffterminierten Si(111)-Oberfläche

    No full text
    High resolution electron energy loss spectroscopy (HREELS) has been used to investigate different types of surface systems. In the first part of this work the structure and surface dynamics of ultrathin iron films are studied. At room temperature the equilibrium phase of iron is bcc (α\alpha-Fe), but by epitaxy on proper substrates other phases can be realized. 6 monolayer (ML) iron films on the Cu(100) surface display the same structure as the substrate save for the outermost layer of Fe atoms which is reconstructed into a p(2 x 1) - p2mg structure. At liquid nitrogen temperature the reconstruction forms an ordered phase. As the temperature rises, a continuous order-disorder transition is observed, which belongs to the universality class of the xy-model with cubic anisotropy. The total reconstructed surface area remains constant during the transition while the average domain size decreases. For the disordered phase at room temperature the dispersion of the Rayleigh phonon has been measured. A comparison with lattice dynamical calculations reveals a large compressive stress in the outermost layer. The surface stress can be related to the reconstruction, but it does not account for the order-disorder transition. The structure of ultrathin iron films on Rh(100) is intermediate between α\alpha-Fe and the fcc structure of Fe/Cu(100). Up to a maximum film thickness of 6 ML studied in this work the films on Rh(100) have a (1 x 1) structure at room temperature as well as at 80 K. Measurements of the Rayleigh phonon dispersion and comparison with lattice dynamical calculations have been performed. A consistent description of the lattice dynamics of iron films on both substrates can be achieved in the framework of a central force model, if the force constants are modified with the bond length according to Badger's rule. Comparison of the two systems 6 ML Fe/Cu(100) and 6 ML Fe/Rh(100) reveals that the surface stress in the former one can not be deduced from the geometrical misfit of the Fe and Cu lattices. In the second part of this work the surface phonon dispersion of the hydrogenterminated Si(111)(1 x 1) surface has been measured and compared with two different theoretical calculations based on the bond charge model and on a force constant model. The disperion of substrate modes is in qualitative agreement with both models, but none of them achieves a satisfactory quantitative description of the surface phono is. A substantial discrepancy arises with the Si - H vibrations which have been calculated in the bond charge model only. The observed dispersion is much weaker han the calculated one, especially in the case of the Si - H bendinc vibrations. This discrepancy is not a shortcoming of the bond charge model itself but rather seems to be due to an improper modelling of the hydrogen termination in the calculations. For the Si(111) - H(1 x 1) surface the temperature-dependent inelastic broadening of the specular beam has been determined. Comparison with model calculations shows that the ideal H-terminated surface does not contain surface states in the band gap, but small traces of impurities may induce such surface states
    • …
    corecore