108 research outputs found

    First-pass perfusion CMR two days after infarction predicts severity of functional impairment six weeks later in the rat heart

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In humans, dynamic contrast CMR of the first pass of a bolus infusion of Gadolinium-based contrast agent has become a standard technique to identify under-perfused regions of the heart and can accurately demonstrate the severity of myocardial infarction. Despite the clinical importance of this method, it has rarely been applied in small animal models of cardiac disease. In order to identify perfusion delays in the infarcted rat heart, here we present a method in which a T<sub>1 </sub>weighted MR image has been acquired during each cardiac cycle.</p> <p>Methods and results</p> <p>In isolated perfused rat hearts, contrast agent infusion gave uniform signal enhancement throughout the myocardium. Occlusion of the left anterior descending coronary artery significantly reduced the rate of signal enhancement in anterior regions of the heart, demonstrating that the first-pass method was sensitive to perfusion deficits. <it>In vivo </it>measurements of myocardial morphology, function, perfusion and viability were made at 2 and 8 days after infarction. Morphology and function were further assessed using cine-MRI at 42 days. The perfusion delay was larger in rat hearts that went on to develop greater functional impairment, demonstrating that first-pass CMR can be used as an early indicator of infarct severity. First-pass CMR at 2 and 8 days following infarction better predicted outcome than cardiac ejection fraction, end diastolic volume or end systolic volume.</p> <p>Conclusion</p> <p>First-pass CMR provides a predictive measure of the severity of myocardial impairment caused by infarction in a rodent model of heart failure.</p

    Biomarker-indicated extent of oxidation of plant-derived organic carbon (OC) in relation to geomorphology in an arsenic contaminated Holocene aquifer, Cambodia

    Get PDF
    The poisoning of rural populations in South and Southeast Asia due to high groundwater arsenic concentrations is one of the world’s largest ongoing natural disasters. It is important to consider environmental processes related to the release of geogenic arsenic, including geomorphological and organic geochemical processes. Arsenic is released from sediments when iron-oxide minerals, onto which arsenic is adsorbed or incorporated, react with organic carbon (OC) and the OC is oxidised. In this study we build a new geomorphological framework for Kandal Province, a highly studied arsenic affected region of Cambodia, and tie this into wider regional environmental change throughout the Holocene. Analyses shows that the concentration of OC in the sediments is strongly inversely correlated to grainsize. Furthermore, the type of OC is also related to grain size with the clay containing mostly (immature) plant derived OC and sand containing mostly thermally mature derived OC. Finally, analyses indicate that within the plant derived OC relative oxidation is strongly grouped by stratigraphy with the older bound OC more oxidised than younger OC

    A novel mutation of the calcium sensing receptor gene is associated with chronic pancreatitis in a family with heterozygous SPINK1 mutations

    Get PDF
    BACKGROUND: The role of mutations in the serine protease inhibitor Kazal type 1 (SPINK1) gene in chronic pancreatitis is still a matter of debate. Active SPINK1 is thought to antagonize activated trypsin. Cases of SPINK1 mutations, especially N34S, have been reported in a subset of patients with idiopathic chronic pancreatitis. However, the inheritance pattern is still unknown. Some cases with N34S heterozygosity have been reported with and without evidence for CP indicating neither an autosomal recessive nor dominant trait. Therefore SPINK1 mutations have been postulated to act as a disease modifier requiring additional mutations in a more complex genetic model. Familial hypocalciuric hypercalcemia (FHH) caused by heterozygous inactivating mutations in the calcium sensing receptor (CASR) gene is considered a benign disorder with elevated plasma calcium levels. Although hypercalcemia represents a risk factor for pancreatitis, increased rates of pancreatitis in patients with FHH have not been reported thus far. METHODS: We studied a family with a FHH-related hypercalcemia and chronic pancreatitis. DNA samples were analysed for mutations within the cationic trypsinogen (N29I, R122H) and SPINK1 (N34S) gene using melting curve analysis. Mutations within CASR gene were identified by DNA sequencing. RESULTS: A N34S SPINK1 mutation was found in all screened family members. However, only two family members developed chronic pancreatitis. These patients also had FHH caused by a novel, sporadic mutation in the CASR gene (518T>C) leading to an amino acid exchange (leucine->proline) in the extracellular domain of the CASR protein. CONCLUSION: Mutations in the calcium sensing receptor gene might represent a novel as yet unidentified predisposing factor which may lead to an increased susceptibility for chronic pancreatitis. Moreover, this family analysis supports the hypothesis that SPINK1 mutations act as disease modifier and suggests an even more complex genetic model in SPINK1 related chronic pancreatitis

    Effectiveness of technology-assisted case management in low income adults with type 2 diabetes (TACM-DM): study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An estimated 1 in 3 American adults will have diabetes by the year 2050. Nationally, South Carolina ranks 10<sup>th </sup>in cases of diagnosed diabetes compared to other states. In adults, type 2 diabetes (T2DM) accounts for approximately 90-95% of all diagnosed cases of diabetes. Clinically, provider and health system factors account for < 10% of the variance in major diabetes outcomes including hemoglobin A1c (HbA1c), lipid control, and resource use. Use of telemonitoring systems offer new opportunities to support patients with T2DM while waiting to be seen by their health care providers at actual office visits. A variety of interventions testing the efficacy of telemedicine interventions have been conducted, but the outcomes have yielded equivocal results, emphasizing the shortage of controlled, randomized trials in this area. This study provides a unique opportunity to address this gap in the literature by optimizing two strategies that have been shown to improve glycemic control, while simultaneously implementing clinical outcomes measures, using a sufficient sample size, and offering health care delivery to rural, underserved and low income communities with T2DM who are seen at Federally Qualified Health Centers (FQHCs) in coastal South Carolina.</p> <p>Methods</p> <p>We describe a four-year prospective, randomized clinical trial, which will test the effectiveness of technology-assisted case management in low income rural adults with T2DM. Two-hundred (200) male and female participants, 18 years of age or older and with an HbA1c ≥ 8%, will be randomized into one of two groups: (1) an intervention arm employing the innovative FORA system coupled with nurse case management or (2) a usual care group. Participants will be followed for 6-months to ascertain the effect of the interventions on glycemic control. Our primary hypothesis is that among indigent, rural adult patients with T2DM treated in FQHC's, participants randomized to the technology-assisted case management intervention will have significantly greater reduction in HbA1c at 6 months of follow-up compared to usual care.</p> <p>Discussion</p> <p>Results from this study will provide important insight into the effectiveness of technology-assisted case management intervention (TACM) for optimizing diabetes care in indigent, rural adult patients with T2DM treated in FQHC's.</p> <p>Trial Registration</p> <p>National Institutes of Health Clinical Trials Registry (<url>http://ClinicalTrials.gov</url> identifier# <a href="http://www.clinicaltrials.gov/ct2/show/NCT01373489">NCT01373489</a></p

    Rif1 S-acylation mediates DNA double-strand break repair at the inner nuclear membrane

    Get PDF
    Rif1 is involved in telomere homeostasis, DNA replication timing, and DNA double-strand break (DSB) repair pathway choice from yeast to human. The molecular mechanisms that enable Rif1 to fulfill its diverse roles remain to be determined. Here, we demonstrate that Rif1 is S-acylated within its conserved N-terminal domain at cysteine residues C466 and C473 by the DHHC family palmitoyl acyltransferase Pfa4. Rif1 S-acylation facilitates the accumulation of Rif1 at DSBs, the attenuation of DNA end-resection, and DSB repair by non-homologous end-joining (NHEJ). These findings identify S-acylation as a posttranslational modification regulating DNA repair. S-acylated Rif1 mounts a localized DNA-damage response proximal to the inner nuclear membrane, revealing a mechanism of compartmentalized DSB repair pathway choice by sequestration of a fatty acylated repair factor at the inner nuclear membrane

    Sex Pheromone Evolution Is Associated with Differential Regulation of the Same Desaturase Gene in Two Genera of Leafroller Moths

    Get PDF
    Chemical signals are prevalent in sexual communication systems. Mate recognition has been extensively studied within the Lepidoptera, where the production and recognition of species-specific sex pheromone signals are typically the defining character. While the specific blend of compounds that makes up the sex pheromones of many species has been characterized, the molecular mechanisms underpinning the evolution of pheromone-based mate recognition systems remain largely unknown. We have focused on two sets of sibling species within the leafroller moth genera Ctenopseustis and Planotortrix that have rapidly evolved the use of distinct sex pheromone blends. The compounds within these blends differ almost exclusively in the relative position of double bonds that are introduced by desaturase enzymes. Of the six desaturase orthologs isolated from all four species, functional analyses in yeast and gene expression in pheromone glands implicate three in pheromone biosynthesis, two Δ9-desaturases, and a Δ10-desaturase, while the remaining three desaturases include a Δ6-desaturase, a terminal desaturase, and a non-functional desaturase. Comparative quantitative real-time PCR reveals that the Δ10-desaturase is differentially expressed in the pheromone glands of the two sets of sibling species, consistent with differences in the pheromone blend in both species pairs. In the pheromone glands of species that utilize (Z)-8-tetradecenyl acetate as sex pheromone component (Ctenopseustis obliquana and Planotortrix octo), the expression levels of the Δ10-desaturase are significantly higher than in the pheromone glands of their respective sibling species (C. herana and P. excessana). Our results demonstrate that interspecific sex pheromone differences are associated with differential regulation of the same desaturase gene in two genera of moths. We suggest that differential gene regulation among members of a multigene family may be an important mechanism of molecular innovation in sex pheromone evolution and speciation

    Identification of 4 novel human ocular coloboma genes ANK3, BMPR1B, PDGFRA, and CDH4 through evolutionary conserved vertebrate gene analysis

    Get PDF
    Purpose: Ocular coloboma arises from genetic or environmental perturbations that inhibit optic fissure (OF) fusion during early eye development. Despite high genetic heterogeneity, 70% to 85% of patients remain molecularly undiagnosed. In this study, we have identified new potential causative genes using cross-species comparative meta-analysis. Methods: Evolutionarily conserved differentially expressed genes were identified through in silico analysis, with in situ hybridization, gene knockdown, and rescue performed to confirm spatiotemporal gene expression and phenotype. Interrogation of the 100,000 Genomes Project for putative pathogenic variants was performed. Results: Nine conserved differentially expressed genes between zebrafish and mouse were identified. Expression of zebrafish ank3a, bmpr1ba/b, cdh4, and pdgfaa was localized to the OF, periocular mesenchyme cells, or ciliary marginal zone, regions traversed by the OF. Knockdown of ank3, bmpr1b, and pdgfaa revealed a coloboma and/or microphthalmia phenotype. Novel pathogenic variants in ANK3, BMPR1B, PDGFRA, and CDH4 were identified in 8 unrelated coloboma families. We showed BMPR1B rescued the knockdown phenotype but variant messenger RNAs failed, providing evidence of pathogenicity. Conclusion: We show the utility of cross-species meta-analysis to identify several novel coloboma disease-causing genes. There is a potential to increase the diagnostic yield for new and unsolved patients while adding to our understanding of the genetic basis of OF morphogenesis

    Assessing the digenic model in rare disorders using population sequencing data

    Get PDF
    An important fraction of patients with rare disorders remains with no clear genetic diagnostic, even after whole-exome or whole-genome sequencing, posing a difficulty in giving adequate treatment and genetic counseling. The analysis of genomic data in rare disorders mostly considers the presence of single gene variants in coding regions that follow a concrete monogenic mode of inheritance. A digenic inheritance, with variants in two functionally-related genes in the same individual, is a plausible alternative that might explain the genetic basis of the disease in some cases. In this case, digenic disease combinations should be absent or underrepresented in healthy individuals. We develop a framework to evaluate the significance of digenic combinations and test its statistical power in different scenarios. We suggest that this approach will be relevant with the advent of new sequencing efforts including hundreds of thousands of samples

    Human and mouse essentiality screens as a resource for disease gene discovery.

    Get PDF
    The identification of causal variants in sequencing studies remains a considerable challenge that can be partially addressed by new gene-specific knowledge. Here, we integrate measures of how essential a gene is to supporting life, as inferred from viability and phenotyping screens performed on knockout mice by the International Mouse Phenotyping Consortium and essentiality screens carried out on human cell lines. We propose a cross-species gene classification across the Full Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually exclusive FUSIL categories have differing biological properties. Most notably, Mendelian disease genes, particularly those associated with developmental disorders, are highly overrepresented among genes non-essential for cell survival but required for organism development. After screening developmental disorder cases from three independent disease sequencing consortia, we identify potentially pathogenic variants in genes not previously associated with rare diseases. We therefore propose FUSIL as an efficient approach for disease gene discovery
    corecore