61 research outputs found

    Salinity effects on biodegradation of Reactive Black 5 for one stage and two stages sequential anaerobic aerobic biological processes employing different anaerobic sludge

    Get PDF
    In this study the effect of NaCl, normally found in dye bath wastewaters employing reactive azo dyes, on the performance of sequential anaerobic-aerobic processes for treatment of Reactive Black 5 (RB5) containing media, with concentration in the range 100-500mgL-1, was investigated. Three possible scenarios of the sequential anaerobic-aerobic process, namely two stage process and one stage processes employing either anaerobic or activated sludge, were considered. The results showed a statistically significant enhancement of the anaerobic decolourisation efficiency as a result of the addition of 30gL-1 NaCl to the RB5 containing media for two stage processes and one stage processes employing anaerobic sludge. NaCl at 30gL-1 concentration also inhibited aerobic colour formation during two stage processes whereas it prevented aerobic decolourisation during one stage processes. HPLC and UV Vis analysis indicated that during anaerobic phase/stage the majority of azo bonds in RB5 molecules cleave whereas the hydrophobicity/MW of the resulting dye reduction metabolites decreases. The same analysis revealed partial mineralisation of RB5 reduction metabolites under aerobic conditions. The results of the present work also showed that the effect of salt on anaerobic decolourisation efficiency, TVFA and methane production was dependent on the exposure history of anaerobic sludge

    Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction

    Get PDF
    An auxetic conductive cardiac patch (AuxCP) for the treatment of myocardial infarction (MI) is introduced. The auxetic design gives the patch a negative Poisson's ratio, providing it with the ability to conform to the demanding mechanics of the heart. The conductivity allows the patch to interface with electroresponsive tissues such as the heart. Excimer laser microablation is used to micropattern a re-entrant honeycomb (bow-tie) design into a chitosan-polyaniline composite. It is shown that the bow-tie design can produce patches with a wide range in mechanical strength and anisotropy, which can be tuned to match native heart tissue. Further, the auxetic patches are conductive and cytocompatible with murine neonatal cardiomyocytes in vitro. Ex vivo studies demonstrate that the auxetic patches have no detrimental effect on the electrophysiology of both healthy and MI rat hearts and conform better to native heart movements than unpatterned patches of the same material. Finally, the AuxCP applied in a rat MI model results in no detrimental effect on cardiac function and negligible fibrotic response after two weeks in vivo. This approach represents a versatile and robust platform for cardiac biomaterial design and could therefore lead to a promising treatment for MI

    Cardiosphere-Derived Cells Improve Function in the Infarcted Rat Heart for at Least 16 Weeks – an MRI Study

    Get PDF
    Aims Endogenous cardiac progenitor cells, expanded from explants via cardiosphere formation, present a promising cell source to prevent heart failure following myocardial infarction. Here we used cine-magnetic resonance imaging (MRI) to track administered cardiosphere-derived cells (CDCs) and to measure changes in cardiac function over four months in the infarcted rat heart. Methods and Results CDCs, cultured from neonatal rat heart, comprised a heterogeneous population including cells expressing the mesenchymal markers CD90 and CD105, the stem cell marker c-kit and the pluripotency markers Sox2, Oct3/4 and Klf-4. CDCs (2×106) expressing green fluorescent protein (GFP+) were labelled with fluorescent micron-sized particles of iron oxide (MPIO). Labelled cells were administered to the infarcted rat hearts (n = 7) by intramyocardial injection immediately following reperfusion, then by systemic infusion (4×106) 2 days later. A control group (n = 7) was administered cell medium. MR hypointensities caused by the MPIOs were detected at all times and GFP+ cells containing MPIO particles were identified in tissue slices at 16 weeks. At two days after infarction, cardiac function was similar between groups. By 6 weeks, ejection fractions in control hearts had significantly decreased (47±2%), but this was not evident in CDC-treated hearts (56±3%). The significantly higher ejection fractions in the CDC-treated group were maintained for a further 10 weeks. In addition, CDC-treated rat hearts had significantly increased capillary density in the peri-infarct region and lower infarct sizes. MPIO-labelled cells also expressed cardiac troponin I, von Willebrand factor and smooth muscle actin, suggesting their differentiation along the cardiomyocyte lineage and the formation of new blood vessels. Conclusions CDCs were retained in the infarcted rat heart for 16 weeks and improved cardiac function

    A novel mutation of the calcium sensing receptor gene is associated with chronic pancreatitis in a family with heterozygous SPINK1 mutations

    Get PDF
    BACKGROUND: The role of mutations in the serine protease inhibitor Kazal type 1 (SPINK1) gene in chronic pancreatitis is still a matter of debate. Active SPINK1 is thought to antagonize activated trypsin. Cases of SPINK1 mutations, especially N34S, have been reported in a subset of patients with idiopathic chronic pancreatitis. However, the inheritance pattern is still unknown. Some cases with N34S heterozygosity have been reported with and without evidence for CP indicating neither an autosomal recessive nor dominant trait. Therefore SPINK1 mutations have been postulated to act as a disease modifier requiring additional mutations in a more complex genetic model. Familial hypocalciuric hypercalcemia (FHH) caused by heterozygous inactivating mutations in the calcium sensing receptor (CASR) gene is considered a benign disorder with elevated plasma calcium levels. Although hypercalcemia represents a risk factor for pancreatitis, increased rates of pancreatitis in patients with FHH have not been reported thus far. METHODS: We studied a family with a FHH-related hypercalcemia and chronic pancreatitis. DNA samples were analysed for mutations within the cationic trypsinogen (N29I, R122H) and SPINK1 (N34S) gene using melting curve analysis. Mutations within CASR gene were identified by DNA sequencing. RESULTS: A N34S SPINK1 mutation was found in all screened family members. However, only two family members developed chronic pancreatitis. These patients also had FHH caused by a novel, sporadic mutation in the CASR gene (518T>C) leading to an amino acid exchange (leucine->proline) in the extracellular domain of the CASR protein. CONCLUSION: Mutations in the calcium sensing receptor gene might represent a novel as yet unidentified predisposing factor which may lead to an increased susceptibility for chronic pancreatitis. Moreover, this family analysis supports the hypothesis that SPINK1 mutations act as disease modifier and suggests an even more complex genetic model in SPINK1 related chronic pancreatitis

    Sex Pheromone Evolution Is Associated with Differential Regulation of the Same Desaturase Gene in Two Genera of Leafroller Moths

    Get PDF
    Chemical signals are prevalent in sexual communication systems. Mate recognition has been extensively studied within the Lepidoptera, where the production and recognition of species-specific sex pheromone signals are typically the defining character. While the specific blend of compounds that makes up the sex pheromones of many species has been characterized, the molecular mechanisms underpinning the evolution of pheromone-based mate recognition systems remain largely unknown. We have focused on two sets of sibling species within the leafroller moth genera Ctenopseustis and Planotortrix that have rapidly evolved the use of distinct sex pheromone blends. The compounds within these blends differ almost exclusively in the relative position of double bonds that are introduced by desaturase enzymes. Of the six desaturase orthologs isolated from all four species, functional analyses in yeast and gene expression in pheromone glands implicate three in pheromone biosynthesis, two Δ9-desaturases, and a Δ10-desaturase, while the remaining three desaturases include a Δ6-desaturase, a terminal desaturase, and a non-functional desaturase. Comparative quantitative real-time PCR reveals that the Δ10-desaturase is differentially expressed in the pheromone glands of the two sets of sibling species, consistent with differences in the pheromone blend in both species pairs. In the pheromone glands of species that utilize (Z)-8-tetradecenyl acetate as sex pheromone component (Ctenopseustis obliquana and Planotortrix octo), the expression levels of the Δ10-desaturase are significantly higher than in the pheromone glands of their respective sibling species (C. herana and P. excessana). Our results demonstrate that interspecific sex pheromone differences are associated with differential regulation of the same desaturase gene in two genera of moths. We suggest that differential gene regulation among members of a multigene family may be an important mechanism of molecular innovation in sex pheromone evolution and speciation

    Adaptation of anaerobic biomass to saline conditions: Role of compatible solutes and extracellular polysaccharides

    Get PDF
    This study investigated the role of compatible solutes, extracellular polysaccharides (EPS), and nutrients on anaerobic biomass when stressed with salinity. When 1 mM of osmoregulants glycine betaine, α-glutamate and β-glutamate were added separately to serum bottles containing biomass not adapted to sodium, and fed with glucose and 35 g NaCl/L, all the compatible solutes were found to alleviate sodium inhibition, although glycine betaine was found to be the most effective. The effect of glycine betaine on different anaerobic bacterial groups under salinity stress was monitored using VFAs, and showed that methanogens were more protected than propionate utilisers. Moreover, the addition of 1 mM of glycine betaine to anaerobic biomass not adapted to salinity resulted in significantly higher methane production rates compared with anaerobic biomass that was exposed for 4 weeks to 35 g NaCl/L. Interestingly, under saline batch conditions when the medium was replaced totally the culture produced less methane than when only new substrate was added due to compatible solutes cycling between the media and the cell. The elimination of macronutrients from the medium was found to have a more pronounced negative effect on biomass under saline compared with nonsaline conditions, and because of the synthesis of N-compatible solutes sufficient nutrients should always be present. On the other hand, the absence from the medium of micronutrients did not further reduce biomass activity under salinity. Finally, a higher production of EPS was obtained from biomass exposed to higher salt concentrations, and its composition was found to change under different saline conditions and time. As a result, biomass under saline conditions had a slightly higher mean flock size compared with the biomass that was not subjected to salt. © 2008 Elsevier Inc. All rights reserved
    corecore