3,377 research outputs found

    St. John\u27s Church Sandwich: First Centennial of the Anglican Church in the County of Essex

    Get PDF
    100th anniversary publication; With special reference to the history and work of St. John\u27s Church, Sandwich ; print copy located in Queen\u27s University Library.https://scholar.uwindsor.ca/swoda-windsor-region/1118/thumbnail.jp

    Collaborate or thread the eye of the needle

    Get PDF
    Abstract: Th

    Use of Evanescent Plane Waves for Low-Frequency Energy Transmission Across Material Interfaces

    Get PDF
    The transmission of sound across high-impedance difference interfaces, such as an air-water interface, is of significant interest for a number of applications. Sonic booms, for instance, may affect marine life, if incident on the ocean surface, or impact the integrity of existing structures, if incident on the ground surface. Reflection and refraction at the material interface, and the critical angle criteria, generally limit energy transmission into higher-impedance materials. However, in contrast with classical propagating waves, spatially decaying incident waves may transmit energy beyond the critical angle. The inclusion of a decaying component in the incident trace wavenumber yields a nonzero propagating component of the transmitted surface normal wavenumber, so energy propagates below the interface for all oblique incident angles. With the goal of investigating energy transmission using incident evanescent waves, a model for transmission across fluid-fluid and fluid-solid interfaces has been developed. Numerical results are shown for the air-water interface and for common air-solid interfaces. The effects of the incident wave parameters and interface material properties are also considered. For the air-solid interfaces, conditions can be found such that no reflected wave is generated, due to impedance matching among the incident and transmitted waves, which yields significant transmission increases over classical incident waves

    On The Use Of Evanescent Plane Waves For Low-Frequency Energy Transmission Across Material Interfaces

    Get PDF
    The transmission of airborne sound into high-impedance media is of interest in several applications. For example, sonic booms in the atmosphere may impact marine life when incident on the ocean surface, or affect the integrity of existing structures when incident on the ground. Transmission across high impedance-difference interfaces is generally limited by reflection and refraction at the surface, and by the critical angle criterion. However, spatially decaying incident waves, i.e., inhomogeneous or evanescent plane waves, may transmit energy above the critical angle, unlike homogeneous plane waves. The introduction of a decaying component to the incident trace wavenumber creates a nonzero propagating component of the transmitted normal wavenumber, so energy can be transmitted across the interface. A model of evanescent plane waves and their transmission across fluid-fluid and fluid-solid interfaces is developed here. Results are presented for both air-water and air-solid interfaces. The effects of the incident wave parameters (including the frequency, decay rate, and incidence angle) and the interfacial properties are investigated. Conditions for which there is no reflection at the air-solid interface, due to impedance matching between the incident and transmitted waves, are also considered and are found to yield substantial transmission increases over homogeneous incident waves

    The Construction of Acoustic Waveforms from Plane Wave Components to Enhance Energy Transmission into Solid Media

    Get PDF
    The transmission of acoustic energy into solid materials is of interest in a wide range of applications, including ultrasonic imaging and nondestructive testing. However, the large impedance mismatch at the solid interface generally limits the transmission of incident acoustic energy. With the goal of improving the fraction of the energy transmitted into solid materials, the use of various bounded spatial profiles, including commonly-employed forms, such as Gaussian distributions, as well as newly-constructed profiles, has been investigated. The spatial profile is specified as the pressure amplitude distribution of the incident wave. Bounded acoustic beams are represented here as sums of harmonic plane waves, and results obtained for the optimal parameters of incident plane wave components are used to inform the construction of bounded wave profiles. The effect of the form of the spatial profile is investigated, with the total energy carried by the incident wave held constant as the profile is varied, and the relationship with the plane wave components which superimpose to form the bounded wave is discussed. Direct comparisons are made for the efficiency of the energy transmission of different profiles. The results reveal that, by tuning the form of the profile, substantial improvements in the total energy transmission can be achieved as compared to Gaussian and square waveforms

    Stress and Energy Transmission by Inhomogeneous Plane Waves into Dissipative Media

    Get PDF
    The characteristics of sound transmission into real, or dissipative, media differ from those of transmission into lossless media. In particular, when a plane wave in a fluid is incident upon a real, dissipative elastic material, the transmitted waves are in general inhomogeneous, even when the incident wave is itself homogeneous and incident at a sub-critical angle; and more significantly, energy transmission occurs even above the critical angle. In addition, for any real incidence angle, the parameters of an incident inhomogeneous wave may be tuned so that there is no reflection from the surface of a viscoelastic solid. That phenomenon may be exploited in applications requiring energy transmission into solids. In this work, the transmission of incident inhomogeneous, as well as homogeneous, acoustic waves into solid materials is characterized; a hysteretic damping model is assumed. Numerical results are presented for the transmitted stress and energy distributions for typical solid materials, including polymer-based solids. The conditions for total transmission, i.e., no reflection at the interface, are explored, where the propagation angle, degree of inhomogeneity, and frequency of the incident wave are varied for a given material. These investigations show substantial transmission gains in the vicinity of the zero of the reflection coefficient, compared to homogeneous incident waves

    Low-Frequency Energy Transmission across Material Interfaces using Incident Evanescent Waves

    Get PDF
    Transmission of airborne sound into higher-impedance materials is of interest in a range of applications. Sonic booms, for example, may adversely affect marine life, if incident on the ocean surface, or may produce underground pressure waves potentially capable of impacting the integrity of existing structures, if incident on the ground surface. Energy transmission into higher-impedance materials is generally limited by significant reflection and refraction at the material interface, and by the critical angle criteria. However, unlike classical waves, spatially-decaying, or evanescent, incident waves can transmit energy at angles beyond the critical angle. When a decaying component is introduced into the incident trace wavenumber, the interaction at the interface produces a nonzero propagating component of the transmitted surface normal wavenumber, so energy is transmitted across the interface for all oblique incident angles. With the aim of investigating energy transmission using incident evanescent waves, a model for pressure and intensity transmission across the fluid-fluid and fluid-solid interfaces has been developed. Numerical results are given for common interfaces that include the air-water interface and typical air-solid interfaces, where the effects of the incident wave parameters and interface material properties are considered as well. For the air-solid interfaces, conditions can be tuned such that no reflected wave is generated at the interface, owing to impedance matching between the incident and transmitted waves, which yields considerable transmission increases over classical incident waves

    Acanthamoeba activates macrophages predominantly through toll-like receptor 4 and MyD88-dependent mechanisms to induce Interleukin IL-12 and IL-6

    Get PDF
    Acanthamoeba castellanii is a free-living ubiquitous amoeba, with a worldwide distribution, that can occasionally infect humans, causing particularly severe infections in immune compromised individuals. Dissecting the immunology of Acanthamoeba infections has been considered problematic due to the very low incidence of disease despite the high exposure rates. Whilst macrophages are acknowledged as playing a significant role in Acanthamoeba infections little is known about how this facultative parasite influences macrophage activity. Therefore, in this study we investigate the effects of Acanthamoeba on the activation of resting macrophages. Consequently, murine bone marrow derived macrophages were co-cultured with trophozoites of either the laboratory Neff strain, or a clinical isolate of A. castellanii. In vitro real-time imaging demonstrated that trophozoites of both strains often established evanescent contact with macrophages. Both Acanthamoeba strains induced a pro-inflammatory macrophage phenotype characterized by significant production of IL-12 and IL-6. However, macrophages co-cultured with the clinical isolate of Acanthamoeba produced significantly less IL-12 and IL-6 in comparison to the Neff strain. The utilization of macrophages derived from MyD88, TRIF, TLR2, TLR4, TLR2/4 deficient mice indicated that Acanthamoeba-induced pro-inflammatory cytokine production was through MyD88-dependent, TRIF independent, TLR4-induced events. This study shows for the first time the involvement of TLRs, expressed on macrophages in the recognition and response to Acanthamoeba trophozoites
    • …
    corecore