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Premise and Motivation 

D. C. Woods Purdue University 

• Detection of improvised explosive devices (IEDs) 

• Strong dependence of vapor pressure on 
temperature 

• May improve detection capabilities by selective 
heating 
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Low-frequency source Energetic material 
• Increase in temperature 
• Increase in vapor 

pressure 

Stand-off distance 



Premise and Motivation 

• Optimization of incident wave parameters for 
maximal stress and energy transmission 

• Theoretical study of incident inhomogeneous 
plane waves in dissipative media 

• Minimization of reflection coefficient magnitude 
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Basic representation of acoustical interface 

Solid 

Air 

Incident wave 



General Acoustic Plane Waves 
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Homogeneous wave Inhomogeneous wave 

Ideal fluid or  
Elastic solid 

Real fluid or 
Viscoelastic solid 



Representation in Dissipative Media 
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𝒛 

𝒙 

Attenuation 

vector, 𝐴  

𝜃 

(𝜃 − 𝛾) 

Propagation 

vector, 𝑃 

Wave inhomogeneity angle,  
0° ≤ 𝛾 < 90° 

𝛾 
Stress field (Pa) 

1-Pa, 1000-Hz wave in Sylgard 



Representation in Dissipative Media 
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• Each wave type is characterized by the corresponding 
material wavenumber: 

𝑘 = 𝑘𝑅 + 𝑗𝑘𝐼 

• Homogeneous waves (𝛾 = 0°): 

𝑣𝐻 =
ω

𝑘𝑅
, 𝐴 𝐻 = −𝑘𝐼 

• Inhomogeneous waves (𝛾 ≠ 0°): 

𝑣 = function γ < 𝑣𝐻,  

𝐴 = function 𝛾 > 𝐴 𝐻  
 

𝑘 𝑥 = 𝑃 sin 𝜃 − 𝑗 𝐴 sin(𝜃 − 𝛾) 

𝑘 𝑧 = 𝑃 cos 𝜃 − 𝑗 𝐴 cos 𝜃 − 𝛾  
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Creation of Inhomogeneous Plane Waves 

D. C. Woods Purdue University 7 

Phased arrays of sources 
(Robin et al., 2014) 

Selective absorbing geometries 
(Deschamps, 1994) 

Vibrating plates coupled to 
piezoelectric transducers 

(Fujii et al., 2014) 
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• Boundary conditions at 
interface (𝑧 = 0) 

 σ1,𝑧 𝑥, 0 = σ2,𝑧(𝑥, 0) 

 𝑣1,𝑧 𝑥, 0 = 𝑣2,𝑧 𝑥, 0  

 σ2,𝑥𝑧 𝑥, 0 = 0 
 

• Trace wavenumber continuity 

 𝑘 1,𝑥 = 𝑘 2,𝑥 = 𝜅 2,𝑥 

Fluid–Solid Interface 



Optimal Incident Wave Parameters 

• Optimal incidence angle is the Rayleigh angle 

 

 

 

 
• Wave inhomogeneity: 

• For low-loss solids, optimal incident wave is 
inhomogeneous (unique such inhomogeneity) 

• For higher-loss solids, optimal incident wave is 
homogeneous 
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𝜆𝑅𝑎𝑦 

𝜆𝑖𝑛𝑐 

Wavefronts of 
incident wave 

Spatial resonance of induced 
longitudinal and shear particle motions 
(image: http://www.sjvgeology.org/oil/Rayleigh_surface_waves2.gif) 



Results for Ideal Fluid–Solid Interface 
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Magnitude of Reflection Coefficient 
(1000 Hz) 

Stress Distribution in Elastic Solid (Pa) 

Incidence angle (deg.) 
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Low-Loss Interface: Water–Stainless Steel 
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Effect of Incidence Angle 
Effect of Wave Inhomogeneity  

(Near Rayleigh Angle) 

Magnitude of Reflection Coefficient 



Low-Loss Interface: Water–Stainless Steel 
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Effect of Incidence Angle 
Effect of Wave Inhomogeneity  

(Near Rayleigh Angle) 

Magnitude of Reflection Coefficient 



Effect of Increasing Material Dissipation 
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Magnitude of Reflection Coefficient 
vs. Dissipation Level (𝜽 ≈ 𝟑𝟎. 𝟖𝟐°) 



Low-Loss Interface: Water–Stainless Steel 
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Transmitted Normal Stress Distribution 

Incidence Angle, 𝜃 
20° 25° 30° 35° 

Water Stainless Steel 
+σ𝑧,𝑚𝑎𝑥  

−σ𝑧,𝑚𝑎𝑥  

0 

Incidence Angle, 𝜃 

𝑅  



Low-Loss Interface: Water–Stainless Steel 
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Incidence Angle, 𝜃 
20° 25° 30° 35° 

Transmitted Normal Stress Distribution 

Water Stainless Steel 
+σ𝑧,𝑚𝑎𝑥  

−σ𝑧,𝑚𝑎𝑥  

0 

Incidence Angle, 𝜃 

𝑅  



Low-Loss Interface: Water–Stainless Steel 
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Incidence Angle, 𝜃 
20° 25° 30° 35° 

Transmitted Normal Stress Distribution 

Water Stainless Steel 
+σ𝑧,𝑚𝑎𝑥  

−σ𝑧,𝑚𝑎𝑥  

0 

Incidence Angle, 𝜃 

𝑅  



Low-Loss Interface: Water–Stainless Steel 
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Incidence Angle, 𝜃 
20° 25° 30° 35° 

Transmitted Normal Stress Distribution 

Water Stainless Steel 
+σ𝑧,𝑚𝑎𝑥  

−σ𝑧,𝑚𝑎𝑥  

0 

Incidence Angle, 𝜃 

𝑅  



Low-Loss Interface: Water–Stainless Steel 
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Incidence Angle, 𝜃 
20° 25° 30° 35° 

Transmitted Normal Intensity Distribution 

Water Stainless Steel 
+𝐼𝑧,𝑚𝑎𝑥  

−𝐼𝑧,𝑚𝑎𝑥  

0 

Incidence Angle, 𝜃 

𝑅  



Low-Loss Interface: Water–Stainless Steel 
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Incidence Angle, 𝜃 
20° 25° 30° 35° 

Transmitted Normal Intensity Distribution 

Water Stainless Steel 
+𝐼𝑧,𝑚𝑎𝑥  

−𝐼𝑧,𝑚𝑎𝑥  

0 

Incidence Angle, 𝜃 

𝑅  



Low-Loss Interface: Water–Stainless Steel 
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Inhomogeneity Angle, 𝛾 
0° 45° 80° 90° 

Transmitted Normal Intensity Distribution 

Water Stainless Steel 
+𝐼𝑧,𝑚𝑎𝑥  

−𝐼𝑧,𝑚𝑎𝑥  
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Inhomogeneity Angle, 𝛾 
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Low-Loss Interface: Water–Stainless Steel 
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Inhomogeneity Angle, 𝛾 
0° 45° 80° 90° 

Transmitted Normal Intensity Distribution 

+𝐼𝑧,𝑚𝑎𝑥  

−𝐼𝑧,𝑚𝑎𝑥  
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Inhomogeneity Angle, 𝛾 

Water Stainless Steel 

𝑅  



Low-Loss Interface: Water–Stainless Steel 
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Inhomogeneity Angle, 𝛾 
0° 45° 80° 90° 

Transmitted Normal Intensity Distribution 

+𝐼𝑧,𝑚𝑎𝑥  

−𝐼𝑧,𝑚𝑎𝑥  

0 

Inhomogeneity Angle, 𝛾 
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High-Loss Interface: Air–Sylgard 
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Inhomogeneity Angle, 𝛾 
0° 45° 80° 90° 

Transmitted Normal Stress Distribution 

~0.99 

+σ𝑧,𝑚𝑎𝑥  

−σ𝑧,𝑚𝑎𝑥  
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Inhomogeneity Angle, 𝛾 

Air Sylgard 
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High-Loss Interface: Air–Sylgard 
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Inhomogeneity Angle, 𝛾 
0° 45° 80° 90° 

Transmitted Normal Stress Distribution 

+σ𝑧,𝑚𝑎𝑥  

−σ𝑧,𝑚𝑎𝑥  
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Inhomogeneity Angle, 𝛾 
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High-Loss Interface: Air–Sylgard 
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Inhomogeneity Angle, 𝛾 
0° 45° 80° 90° 

Transmitted Normal Stress Distribution 

+σ𝑧,𝑚𝑎𝑥  

−σ𝑧,𝑚𝑎𝑥  
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Conclusions 
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• Use of general acoustic plane waves for increased 
transmission in solids 

Optimal incident 
wave 

Attainable energy 
transmission 

Ideal fluid– 
Elastic solid 

Real fluid– 
Viscoelastic solid 

Interface 

• Inhomogeneous 
• At Rayleigh angle 

• Total transmission 
• Reflection → 0 
• Narrow domain 

• Inhomogeneous 
for low-loss solids 

• Homogeneous for 
high-loss solids 

• Less than total 
transmission 

• Reflection > 0 
• Wider domain 



Next Steps 

• Further characterization of transmission into 
viscoelastic materials of interest 

• Polymer-bonded energetic materials 
 

• Transmission by finite, spatially-distributed waves 

• Bounded wave profiles typically used in practice 

• Various spatial distributions 
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(Van Den Abeele & Leroy, 1993) 
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Results for Ideal Fluid–Solid Interface 
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Transmitted Normal Intensity (W/m2) 
1-Pa, 1000-Hz incident wave 

𝜷 = 𝟎 (homogeneous) 
𝜷 = 𝟎. 𝟎𝟎𝟏 rad/m 
𝜷 = 𝟎. 𝟎𝟏 rad/m 
𝜷 = 𝟎. 𝟎𝟐 rad/m 

Sample solid 
𝜌 = 1000𝜌𝑎𝑖𝑟  
𝑐 = 10𝑐𝑎𝑖𝑟  
𝑏 = 7𝑐𝑎𝑖𝑟  

𝐼𝑧 =
1

𝑇
 −(σ𝑧𝑣𝑧 + σ𝑥𝑧𝑣𝑥

𝑇

0

)𝑑𝑡 
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Results for Ideal Fluid–Solid Interface 
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Transmitted Normal Stress (Pa) Transmitted Normal Velocity (m/s) 

Approximate parameters for |𝑹 | = 𝟎 
𝜃1,𝑟
∗ ≈ 9.3657°, 𝛽∗ ≈ 1.07 × 10−4 rad/m 
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Results for Ideal Fluid–Solid Interface 

D. C. Woods Purdue University 

Transmitted Normal Intensity (W/m2) 

Compare with 
~5 × 10−7 W/m2 
for homogeneous 
waves below the 

critical angle 
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