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Introduction

D. C. Woods Purdue University

• Goal is to tune the spatial wave profile to maximize 
the transmitted energy across fluid-solid interfaces
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Introduction

D. C. Woods Purdue University

• Potential applications for enhanced acoustic energy 
transmission into solid materials:

• Nondestructive structural testing

• Medical ultrasound imaging and ablation

• Other, non-contact ultrasound applications

(Image credit: http://ndtoverseas.org/Conventional
%20Non%20Destructive%20Test.html)

(Image credit: http://academicdepartments.musc.edu/
sebin/x/k/tumor_abl_overview.jpg)
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Results for Plane Waves

D. C. Woods Purdue University

• Minimum in reflection can be achieved by varying 
spatial decay rate 𝛽 near the Rayleigh angle
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Exemplary Fluid—Solid Interface: 
Magnitude of Reflection Coefficient
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(adapted from Woods et al., J. Acoustical 
Soc. Am., 2015)
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Results for Plane Waves

D. C. Woods Purdue University

• Minimum in reflection can be achieved by varying 
spatial decay rate 𝛽 near the Rayleigh angle
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Exemplary Fluid—Solid Interface: 
Magnitude of Reflection Coefficient
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Soc. Am., 2015)

Reduction of Reflection Coefficient
Near Rayleigh Angle

Spatial resonance of induced longitudinal 
and shear particle motions

(Image credit: http://www.sjvgeology.org/oil/Rayleigh_surface_waves2.gif)



Bounded Wave Profiles

D. C. Woods

• Versatile form to model the incident wave pressure 
profile:

 𝑝(𝑥′, 0) =  𝐴 exp 𝛽𝑥′ −
1
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𝑊
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exp(−𝑗𝜔𝑡)

Purdue University

(form adapted from 
Vanaverbeke et al., J. 

Acoustical Soc. Am., 2003)
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(i.e., when 𝛽 = 0)



Bounded Wave Profiles

D. C. Woods

• Analysis requires Fourier decomposition into plane 
wave components

Purdue University
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Surface Wave Excitation Efficiency

D. C. Woods Purdue University

• Measure of the penetration of the incident wave energy 
and subsequent excitation of the solid surface wave
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Bertoni & Tamir, Appl. Phys., 1973.
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Results for Water—Stainless Steel Interface

D. C. Woods Purdue University

Surface Wave Excitation Efficiency, 𝜼(𝒙∗)

Square/Gaussian Incident Waves
“Bounded Inhomogeneous” 

Incident Waves

4 MHz

“Square” wave

Gaussian wave
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Results for Water—Stainless Steel Interface
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Induced Stresses in Stainless Steel,  𝝈𝒛𝒛 (MPa)

4 MHz

Square wave
(𝛽 = 0, 𝑊 = 7.7 mm)

Bounded inhomogeneous wave
(𝛽 = 134.2 m-1, 𝑊 = 7.7 mm)
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Results for Water—Stainless Steel Interface

D. C. Woods Purdue University

Induced Particle Velocities,  𝒗𝒛 (m/s)

4 MHz

Square wave
(𝛽 = 0, 𝑊 = 7.7 mm)

Bounded inhomogeneous wave
(𝛽 = 134.2 m-1, 𝑊 = 7.7 mm)
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Results for Water—Stainless Steel Interface

D. C. Woods Purdue University

Induced Normal Intensities, 𝑰𝒛 (W/mm2)

4 MHz

Square wave
(𝛽 = 0, 𝑊 = 7.7 mm)

Bounded inhomogeneous wave
(𝛽 = 134.2 m-1, 𝑊 = 7.7 mm)
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Effect of Material Dissipation

D. C. Woods Purdue University

Surface Wave Excitation Efficiency, 𝜼(𝒙∗)

Lossless Solid Viscoelastic Solid

4 MHz

“Square” wave

Gaussian wave
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Results with Material Dissipation

D. C. Woods Purdue University

Induced Stresses in Stainless Steel,  𝝈𝒛𝒛 (MPa)

4 MHz

Square wave
(𝛽 = 0, 𝑊 = 13.5 mm)

Bounded inhomogeneous wave
(𝛽 = 59.8 m-1, 𝑊 = 13.5 mm)
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Results with Material Dissipation

D. C. Woods Purdue University

4 MHz

Square wave
(𝛽 = 0, 𝑊 = 13.5 mm)

Bounded inhomogeneous wave
(𝛽 = 59.8 m-1, 𝑊 = 13.5 mm)

Induced Normal Intensities, 𝑰𝒛 (W/mm2)

15



Conclusions

D. C. Woods Purdue University

• Investigation of tunable “bounded inhomogeneous” 
incident wave profiles for enhanced transmission 
across fluid—solid interfaces

• Increased surface wave excitation efficiency

• Increased subsurface stress and energy flux

• Material dissipation causes a shift in the optimal profile 
parameters (lower degree of asymmetry, larger 
beamwidth)
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Next Steps in Investigation of Waveforms

D. C. Woods Purdue University

Generation of these types of 
profiles by phased arrays

(image adapted from Robin et al., J. 
Acoustical Soc. Am., 2014)

Analysis of pulse excitation by 
various waveforms

(image adapted from Ambrozinski et al., 
Appl. Phys. Lett., 2016)
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