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The transmission of airborne sound into high-impedance media is of interest in several applications.

For example, sonic booms in the atmosphere may impact marine life when incident on the ocean

surface, or affect the integrity of existing structures when incident on the ground. Transmission

across high impedance-difference interfaces is generally limited by reflection and refraction at

the surface, and by the critical angle criterion. However, spatially decaying incident waves, i.e.,

inhomogeneous or evanescent plane waves, may transmit energy above the critical angle, unlike

homogeneous plane waves. The introduction of a decaying component to the incident trace wave-

number creates a nonzero propagating component of the transmitted normal wavenumber, so

energy can be transmitted across the interface. A model of evanescent plane waves and their trans-

mission across fluid-fluid and fluid-solid interfaces is developed here. Results are presented for

both air-water and air-solid interfaces. The effects of the incident wave parameters (including the

frequency, decay rate, and incidence angle) and the interfacial properties are investigated.

Conditions for which there is no reflection at the air-solid interface, due to impedance matching

between the incident and transmitted waves, are also considered and are found to yield substantial

transmission increases over homogeneous incident waves. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4929692]

[ANN] Pages: 2062–2078

I. INTRODUCTION

The transmission of airborne sound into water has been

studied extensively, motivated by applications that include

the detection of aircraft by underwater sensors,1,2 the estima-

tion of sediment properties,3 and concerns regarding the

effects of man-made noise on marine life.4,5 The transmis-

sion of acoustic waves from air into solids is also of interest,

such as in assessing the ground pressure patterns resulting

from sonic booms,6–8 which may affect the integrity of

building structures. Low-frequency sound, in particular, can

be transmitted over large distances in air, and thus often con-

stitutes a substantial portion of the total sound that impinges

on such surfaces.

Pressure and energy transmission across the air-water

and air-solid interfaces are generally limited by the reflection

and refraction at the interface, which are attributable to the

large differences in the densities and wave speeds in the two

media.9–11 In addition, for homogeneous, or classical, plane

waves, it is well documented that no energy can be transmit-

ted into lossless media by components incident above the

critical angle, an angle that is typically quite small given the

large differences in wave speeds. An incident homogeneous

wave above the critical angle yields a decaying pressure field

in the material below the interface, but no energy propagates

beyond the interface. However, if spatially decaying incident

waves are considered, termed inhomogeneous or evanescent

plane waves, energy can be transmitted across the interface

even above the critical angle of incidence. By introducing a

decaying component into the incident trace wavenumber, the

wavenumber components of the transmitted wave are com-

posed of both propagating and decaying terms for all oblique

angles of incidence. Consequently, the surface normal wave-

number in the second material (i.e., in the medium below the

interface) has a nonzero propagating (real) part, and energy

thus propagates away from the interface into the second me-

dium. In fact, for the case of the air-solid interface (or,

generically, a given fluid-solid interface), values for the

angle and decay rate of the incident wave can be found such

that no reflected wave is generated at the interface, which is

attributable to the exact matching of the incident impedance

by the sum of the impedance contributions from the trans-

mitted longitudinal and transverse, or shear, waves.

Moreover, in the region near the zero of the reflection coeffi-

cient, the energy transmitted across the interface can be

increased substantially compared to homogeneous plane

waves below the critical angle. The intensity does, however,

decay with distance into the second medium due to the spa-

tial decay characteristics of the incident, and transmitted,

waves.

In the context of high impedance-difference interfaces,

much work has been presented on the air-water inter-

face,1–5,12–29 due to the significance of the air-ocean inter-

face in naval applications. Significant contributions include

those of Urick,1,2 who investigated underwater sound propa-

gation, including that from aircraft, and Chapman et al.,19,20

who developed a normal mode theory for sound transmission

in a homogeneous atmosphere. Subsequent studies havea)Electronic mail: jfrhoads@purdue.edu
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extended the normal mode theory to include effects from

moving sources, inhomogeneous atmospheres, stratified sea-

beds, and other environmental conditions,3,5,21–29 with most

investigations being primarily concerned with aircraft and

sonic booms as the sources of airborne noise. Sonic booms

have also been studied for the air-ground interface due to the

resulting ground pressure patterns.6–8 For the reverse sce-

nario (i.e., where the source is in a liquid or solid and the

waves are transmitted to air), Godin30–34 and others35–37

have investigated conditions for anomalous transparency

with a low-frequency source close to the interface, owing to

the evanescent waves generated at the surface and the lower

speed of sound in the air medium (which cannot be exploited

when the source is instead situated in air).

Evanescent plane waves can be produced by using phased

arrays of sources and the spectral division method,38–40 or by

the transmission of homogeneous waves through selective

absorbing geometries,41 among other methods,42,43 which

allows for arbitrary variation of the decay rate. For example,

the decay rate can be tuned in the spectral division method

with a rectangular array by varying the amplitudes and phases

of the individual sources. The energy flux in the presence of

such waves, as well as the phenomena occurring at material

interfaces, have been studied both theoretically and experimen-

tally.41,44–46 Notably, a minimum of the reflection coefficient

is observed near the Rayleigh angle for incident inhomogene-

ous waves in both lossless and dissipative media. The repre-

sentation of such waves by complex wavevectors is analogous

to the representation of waves in dissipative or heterogeneous

media,10,11,47,48 where the imaginary part of each wavevector

component corresponds to decay in that direction. This

approach is also analogous to the representation of Gaussian

beams in high-frequency acoustic and electromagnetic

fields.49–52

The goal of the present work was to characterize the

pressure and intensity transmission across material interfaces

for low-frequency, incident evanescent plane waves, includ-

ing those incident above the critical angle for homogeneous

plane waves. To this end, a model of evanescent plane waves

and their transmission across fluid-fluid and fluid-solid inter-

faces was developed. The interface model extends the theory

of the interaction of semi-infinite, homogeneous media pre-

sented by Brekhovskikh9 to allow for incident evanescent

waves. The present work builds on the initial efforts of

Jessop,53 who studied multi-layer propagation in the context

of energetic materials. “Low-frequency” waves were consid-

ered here to be in the frequency range up to 1500 Hz, which

permits transmission over reasonably large distances in air.

Numerical results are presented for the air-water interface

and for typical air-solid interfaces. The effects of the param-

eters of the incident wave (including the frequency, decay

rate, and incidence angle) and those of the interface materi-

als (including the density and wave speed ratios) are also

investigated. The conditions for zero reflection, and maximal

energy transmission, are explored for the air-solid interface

by tuning the parameters of the incident wave near the

Rayleigh angle. It is hoped that the theoretical investigations

presented here provide an initial basis for the use of evanes-

cent waves for increased energy transmission across high

impedance-difference material interfaces, including above

the critical angle of incidence, for a range of existing and

future applications.

II. REPRESENTATION OF EVANESCENT PLANE
WAVES

For a harmonic plane wave traveling in a homogeneous,

isotropic fluid of constant speed of sound c and away from

material interfaces (i.e., in free space), the complex acoustic

pressure ~p can be represented as11

~p ¼ ~Aejðxt�~k �~rÞ; (1)

where ~A is the complex amplitude, x is the angular fre-

quency, t is the time variable, ~k is the propagation vector,

and~r is the position vector. When utilizing a Cartesian coor-

dinate system, the position vector can be expressed in terms

of the respective unit vectors: ~r ¼ xêx þ yêy þ zêz. The

propagation vector, or wavevector, can likewise be

expressed, for an arbitrary direction of propagation, as

~k ¼ kxêx þ kyêy þ kzêz; (2)

where the kn are the wavevector components in the respec-

tive directions. For plane longitudinal waves propagating in

a linear, inviscid fluid, the magnitude of the wavevector, and

the wavevector components, satisfy the relation11

j~kj2 ¼ k2
x þ k2

y þ k2
z ¼

x
c

� �2

: (3)

The scalar quantity k ¼ j~kj ¼ x=c is known as the material

wavenumber.

Homogeneous plane waves exhibit a constant pressure

amplitude and phase on any plane perpendicular to the prop-

agation direction. That is, in the absence of material dissipa-

tion, the pressure does not decay in any dimension for the

harmonic wave. Such homogeneous plane waves are thus

represented by real components kn in the wavevector, which

together give the direction of propagation.

In contrast, evanescent waves are disturbances that

show an exponential decay in one or more dimensions not

aligned with the propagation direction. Examples include

surface waves, such as Rayleigh, Lamb, and Stoneley waves,

as well as bulk evanescent waves.9,41,45 In general, such in-

homogeneous waves may simultaneously decay and propa-

gate in arbitrary directions. Each of the wavevector

components is represented as a complex quantity, where the

real part represents propagation and the imaginary part rep-

resents exponential decay of the wave, in the respective

dimensions: ~kx ¼ ax � jbx; ~ky ¼ ay � jby, and ~kz ¼ az � jbz.

Substitution of the complex components into Eq. (1) yields

~p ¼ ~Ae�bxx�byy�bzzejðxt�axx�ayy�azzÞ: (4)

Note that the real parts of the wavevector components give

the direction of propagation,~a ¼ axêx þ ayêy þ azêz, and the

imaginary parts give the direction of decay, ~b ¼ bxêx

þ byêy þ bzêz.
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In non-dissipative media, evanescent waves decay along

a vector perpendicular to the direction of propagation, and

the propagation and decay characteristics can be represented

by complex angles of propagation. By using this representa-

tion, the angles can be integrated directly into the theory for

homogeneous waves, including interactions at material inter-

faces. In the case of two-dimensional propagation, one of the

wavevector components is zero, and the wave characteristics

can be represented by a single complex angle.

Figure 1 shows a two-dimensional (i.e., ~ky ¼ 0) plane

wave propagating in free space. When using the complex

angle ~h ¼ hr þ jhi (in radians), the wavevector components
~kx and ~kz are determined, as for a real angle, by using the

sine and cosine functions, i.e.,

~kx ¼ k sinðhr þ jhiÞ
¼ k sinðhrÞcoshðhiÞ þ jk cosðhrÞsinhðhiÞ;

~kz ¼ k cosðhr þ jhiÞ
¼ k cosðhrÞcoshðhiÞ � jk sinðhrÞsinhðhiÞ: (5)

In this formulation, the imaginary part of the complex angle

prescribes the rate of exponential decay. The wave decays as

e�bd, where d is the position measured perpendicular to the

propagation direction, and the decay parameter b is given by

b ¼ k sinhðhiÞ: (6)

Substitution of Eq. (5) into Eq. (1) yields

~p¼ ~Ae�b½�cosðhrÞxþsinðhrÞz�ej½xt�ksinðhrÞcoshðhiÞx�kcosðhrÞcoshðhiÞz�:

(7)

The real component hr of the complex angle thus gives the

physical direction of propagation, and the imaginary part hi

controls the decay rate and the effect of the decay on phase

propagation. Note also that the phase is constant on any

plane perpendicular to the propagation direction, but the am-

plitude is not.

The sense of decay along the line perpendicular to the

propagation direction is determined by the sign of the imagi-

nary part hi. If the decay parameter b is prescribed, then the

value of hi, which represents the corresponding rate of decay

can be obtained by inverting Eq. (6), i.e.,

hi ¼ 6ln
jbj
k
þ b

k

� �2

þ 1

" #1=2
0
@

1
A
; (8)

where the sign of hi coincides with that of b.
Evanescent plane waves of the type discussed here are

spatially distributed disturbances of infinite extent. An anal-

ogy can be made with spatially distributed waves that exhibit

concentrated peaks in amplitude, such as Gaussian beams.

However, in the case of evanescent plane waves, the unidir-

ectional spatial decay characteristics perpendicular to the

direction of propagation imply growth without bound in the

opposite direction: this is clearly not possible. That being

said, like homogeneous plane waves, the representation can

be a reasonable approximation over a given region of space,

where the pressure phase is approximately constant on any

perpendicular plane and where the pressure amplitude varies

exponentially.38,39

III. EVANESCENT WAVE TRANSMISSION ACROSS
MATERIAL INTERFACES

For acoustic waves traveling in air, or in other low-

density fluids, energy transmission into liquid or solid media

is generally limited by the large impedance difference,

which causes significant reflection at the interface.9–11 In

addition, liquid and solid media typically have wave speeds

much greater than the speed of sound in air, which causes

significant refraction beyond the interface in the liquid or

solid medium. It is well known that for incident homogeneous

plane waves, no energy can be transmitted across an elastic

interface above the critical angle, and an exponentially decay-

ing pressure field is generated in the second medium. In terms

of the wavevector, the transmitted wave propagates along

(“clings to”) the interface, and the normal wavevector compo-

nent is purely imaginary. Thus, no energy propagates away

from the interface and into the second medium.

However, for incident evanescent plane waves which

simultaneously propagate and decay, energy can be transmit-

ted at physical angles above the critical angle. Through the

introduction of a decaying component in the incident trace

wavenumber, the transmitted trace wavenumber (e.g., ~kx) is

given both propagating and decaying components for all

oblique incidence angles, which in turn also yields propagat-

ing and decaying terms in the transmitted normal wavenum-

ber (e.g., ~kz) to satisfy Eq. (3). Therefore, the transmitted

wave travels at a physical angle below the interface line,

with a nonzero real part of the normal wavenumber, and

energy can propagate away from the interface into the

second material.

Evanescent wave transmission is investigated here for a

single material interface, where homogeneous, lossless

media occupy the two acoustic half-spaces on either side of
FIG. 1. A diagram of a two-dimensional plane wave propagating in free

space.
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the interface. The incident medium is assumed to be a fluid,

and both fluid and solid media are considered for the second

medium. Fluid media support longitudinal waves, but cannot

sustain shear waves. The fluid media on the incident and

transmitted sides of the interface are thus characterized by

densities q1 and q2, respectively, and longitudinal wave

speeds c1 and c2, respectively. In solids, transverse waves

can also propagate, and the solid medium is additionally

characterized by the shear wave speed b2. For homogeneous

wave incidence, hcr ¼ arcsinðc1=c2Þ gives the critical angle

for longitudinal waves and, in the case of the solid medium,

hcr;s ¼ arcsinðc1=b2Þ gives the critical angle for shear waves.

For small ratios c1=c2 and c1=b2, the critical angles are close

to zero, or normal incidence, which prevents energy trans-

mission for most angles. However, as alluded to in the pre-

ceding text, the use of incident evanescent waves effectively

eliminates the critical angle criterion.

A. Fluid-fluid interface

A diagram of the fluid-fluid interface is shown in Fig. 2

for two-dimensional propagation in the xz plane, where a

right-handed Cartesian coordinate system is assumed. In

general, reflected and transmitted longitudinal waves are

generated at the interface. The incident wave is assumed to

decay perpendicular to the direction of propagation and is

represented by the complex angle ~h1 ¼ h1;r þ jh1;i. The

reflected angle matches that of the incident wave, and the

transmitted angle is denoted as ~h2 ¼ h2;r þ jh2;i. The details

of the computation of the transmitted angle, and transmitted

wavevector, are given in the Appendix. Both fluid media are

considered linear and inviscid, so no shear waves propagate

on either side of the interface.

The pressure and particle velocity associated with the

transmitted wave can be derived by using the longitudinal

wave potentials.9 The potential on the incident side of the

interface is the sum of the potentials associated with the inci-

dent and reflected waves

~/1 ¼ ~Kej½xt�k1 sinð~h1Þx�½e�jk1 cosð~h1Þz þ ~Vejk1 cosð~h1Þz�; (9)

where ~K is the potential amplitude of the incident wave, ~V is

the reflection coefficient, and k1 ¼ x=c1 is the material

wavenumber in the incident fluid. On the transmitted side,

the only disturbance is the transmitted longitudinal wave, the

potential of which, using the associated transmission coeffi-

cient ~W , is given as

~/2 ¼ ~K ~Wej½xt�k2 sinð~h2Þx�k2 cosð~h2Þz�; (10)

where k2 ¼ x=c2 is the material wavenumber of the second

fluid.

The boundary conditions at the interface (i.e., at z¼ 0)

require continuity of the normal component of the particle

velocity and continuity of the normal stress.9 The velocity

vector in either of the media is calculated as the gradient of

the wave potential: ~~ul ¼ r~/l. The normal velocities in the

fluids on the incident and transmitted sides of the interface

are thus computed as ~u1;z ¼ @~/1=@z and ~u2;z ¼ @~/2=@z,

respectively. Continuity of the trace wavenumber ~kx across

the interface, also known as generalized Snell’s law, follows

from the normal velocity condition

k1 sinð~h1Þ ¼ k2 sinð~h2Þ: (11)

The normal stress rates in the first and second media are

given by _~r1;zz ¼ q1c2
1r2 ~/1 and _~r2;zz ¼ q2c2

2r2 ~/2, respec-

tively, where the dot denotes the partial derivative with

respect to time, @=@t.
The solution of the two boundary conditions at the inter-

face yields the expressions for the coefficients ~V and ~W
(Ref. 9),

~V ¼
~Z2 � ~Z1

~Z2 þ ~Z1

;

~W ¼ q1

q2

2 ~Z2

~Z2 þ ~Z1

 !
; (12)

where ~Z1 ¼ q1c1= cosð~h1Þ and ~Z2 ¼ q2c2= cosð~h2Þ are the

surface normal impedances for longitudinal waves in the first

and second fluids, respectively.

In the first and second media, the pressures are, respec-

tively, ~p1 ¼ �jxq1
~/1 and ~p2 ¼ �jxq2

~/2. It can be

observed that the pressure amplitude ~A of the incident wave

is related to the amplitude ~K of its wave potential by
~A ¼ �jxq1

~K.

The normal particle velocities on each side of the inter-

face can be calculated directly from the wave potentials by

using the expressions given in the preceding text. In the first

and second fluids, the normal velocities can be expressed,

respectively, as
FIG. 2. (Color online) A diagram of the incident, reflected, and transmitted

waves at the fluid-fluid interface.
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~u1;z ¼
~A
~Z1

ej xt�k1 sin ~h1ð Þx½ � e�jk1 cos ~h1ð Þz � ~Vejk1 cos ~h1ð Þz
h i

;

~u2;z ¼
q2

q1

~A ~W
~Z2

 !
ej xt�k2 sin ~h2ð Þx�k2 cos ~h2ð Þz½ �: (13)

B. Fluid-solid interface

The analysis presented in Sec. III A is extended here to the

case of a solid medium on the transmitted side of the interface.

Solid materials support shear stresses, so transmitted shear

waves are also generated by the interaction at the interface.

Figure 3 shows a diagram of the fluid-solid interface, where a

right-handed Cartesian coordinate system is again assumed. The

shear wave propagates at the transmitted shear angle,

~c2 ¼ c2;r þ jc2;i, and with the shear wave speed b2 in the solid

medium. The details of the computation of the transmitted shear

angle and wavevector are likewise given in the Appendix.

Of particular note for the fluid-solid interface is the phe-

nomena that occur near the Rayleigh angle. Rayleigh waves

constitute a particular surface wave solution to the wave equa-

tion whereby the longitudinal and shear waves travel at a com-

mon velocity along the interface of the solid half-space, which

may be bordered by vacuum or, for generalized Rayleigh

waves, by an ambient fluid.9,54,55 If a homogeneous plane

wave in the ambient fluid is incident at the elastic interface

above the critical angle, a Rayleigh surface wave is generated,

the energy of which, in the absence of material dissipation, is

reemitted to yield total reflection, and no bulk wave is trans-

mitted. In contrast, if an evanescent plane wave is incident on

the solid, bulk evanescent waves (both longitudinal and shear)

are transmitted, and the amplitudes are greatest at the Rayleigh

angle. A minimum in the reflection coefficient is observed at

this angle,41,45 owing to the resonance phenomenon (and

increased transmission) that occurs when the excitation is coin-

cident with the free wave solution. Thus, the use of an incident

evanescent wave, in generating the transmitted bulk waves,

provides a mechanism for energy to propagate below the inter-

face, which is maximized at the Rayleigh angle.

The Rayleigh wave speed cRay for an elastic half-space

is computed from the characteristic equation9,54

cRay

b2

� �6

� 8
cRay

b2

� �4

þ 8 3� 2
b2

c2

� �2
" #

� cRay

b2

� �2

� 16 1� b2

c2

� �2
" #

¼ 0; (14)

which has a unique positive real root such that cRay < b2.

The Rayleigh angle can be subsequently computed as

hRay ¼ arcsinðc1=cRayÞ.
The derivation for the fluid-solid interface parallels that

of the fluid-fluid interface except that, in general, transverse

waves also exist in the solid medium.9 The longitudinal

potential is as given in Eq. (10), and the shear wave potential

is given by

~w2 ¼ ~K ~Ws e j½xt�j2sinð~c2Þx�j2cosð~c2Þz�; (15)

where ~Ws is the transmission coefficient for the shear wave

potential and j2 ¼ x=b2 is the material shear wavenumber

in the solid material.
The boundary conditions at the interface require, as

before, continuity of the normal particle velocity and conti-

nuity of the normal stress. In addition, the shear stress must

also be continuous across the interface, which necessitates

that the shear stress in the solid be zero at the interface, since

the incident fluid medium is assumed to be inviscid and thus

cannot sustain shear waves.9 The velocity vector in the solid

medium is computed as the sum of the gradient of the longi-

tudinal potential and the curl of the shear potential’s associ-

ated vector field
~~W2: ~~u2 ¼ r~/2 þr�

~~W2. For the case of

two-dimensional propagation, the shear potential field is

simply
~~W2 ¼ ~w2êy, and the normal velocity in the solid

reduces to ~u2;z ¼ @~/2=@zþ @~w2=@x. Continuity of the trace

wavenumber, which also includes the shear trace wavenum-

ber ~j2;x ¼ j2 sinð~c2Þ, again follows from the normal velocity

condition

k1 sinð~h1Þ ¼ k2 sinð~h2Þ ¼ j2 sinð~c2Þ: (16)

The normal stress rate in the solid medium also includes con-

tributions from the shear wave potential and is given as9

_~r2;zz ¼ q2c2
2r2 ~/2 þ 2q2b2

2

@2 ~w2

@x@z
� @

2 ~/2

@x2

� �
: (17)

Similarly, the shear stress rate in the solid, which must be

zero at the interface, is expressed as9

_~r2;xz ¼ q2b2
2 2

@2 ~/2

@x@z
þ @

2 ~w2

@x2
� @

2 ~w2

@z2

� �
: (18)FIG. 3. (Color online) A diagram of the incident, reflected, and transmitted

waves at the fluid-solid interface.
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Solving for the three boundary conditions at the inter-

face yields the expressions for the coefficients ~V ; ~W , and
~Ws. Brekhovskikh9 gives the solution in terms of the trans-

mitted shear angle ~c2,

~V ¼
~Z2 cos2 2~c2ð Þ þ ~Z2;s sin2 2~c2ð Þ � ~Z1

~Z2 cos2 2~c2ð Þ þ ~Z2;s sin2 2~c2ð Þ þ ~Z1

;

~W ¼ q1

q2

2 ~Z2 cos 2~c2ð Þ
~Z2 cos2 2~c2ð Þ þ ~Z2;s sin2 2~c2ð Þ þ ~Z1

" #
;

~Ws ¼
q1

q2

2 ~Z2;s sin 2~c2ð Þ
~Z2 cos2 2~c2ð Þ þ ~Z2;s sin2 2~c2ð Þ þ ~Z1

" #
; (19)

where ~Z2;s ¼ q2b2= cosð~c2Þ is the surface normal impedance

for shear waves in the solid medium.

The pressure in the incident fluid is again given by

~p1 ¼ �jxq1
~/1. In the solid, each stress component can be

computed by dividing the corresponding stress rate by jx.

The transmitted normal and shear stresses can be expanded

and written, respectively, in terms of the pressure amplitude
~A of the incident wave as

~r2;zz ¼
q2

~A

q1

(
~W 2

b2

c2

� �2

sin2 ~h2

� �
� 1

" #

� e j xt�k2 sin ~h2ð Þx�k2 cos ~h2ð Þz½ �

� ~Ws sin 2~c2ð Þej xt�j2sin ~c2ð Þx�j2 cos ~c2ð Þz½ �

)
;

~r2;xz ¼
q2

~A

q1

n
~Ws cos 2~c2ð Þe j xt�j2 sin ~c2ð Þx�j2 cos ~c2ð Þz½ �

� ~W
b2

c2

� �2

sin 2~h2

� �
e j xt�k2sin ~h2ð Þx�k2cos ~h2ð Þz½ �o:

(20)

Finally, the particle velocities in the solid medium can

be computed from the wave potentials using the expression

given in the preceding text. For the normal and tangential

components of the velocity, this yields, respectively,

~u2;z ¼
q2

~A

q1

(
~W
~Z2

e j xt�k2sin ~h2ð Þx�k2cos ~h2ð Þz½ �

þ
~Ws sin ~c2ð Þ

q2b2

e j xt�j2sin ~c2ð Þx�j2cos ~c2ð Þz½ �

)
;

~u2;x ¼
q2

~A

q1

(
~W sin ~h2

� �
q2c2

e j xt�k2sin ~h2ð Þx�k2cos ~h2ð Þz½ �

�
~Ws

~Z2;s

e j xt�j2 sin ~c2ð Þx�j2 cos ~c2ð Þz½ �

)
: (21)

C. Intensity transmission

The instantaneous intensity of an acoustic wave is the

rate of energy transmission per unit area in the direction of

propagation.10,11 For harmonic waves, the instantaneous in-

tensity can be time-averaged to give the acoustic intensity.

The intensity is represented as a vector ~I , where the compo-

nents correspond to the acoustic intensities in the respective

directions. For stress tensor ~rmn and velocity vector ~um, the

components of the instantaneous energy flux vector (per unit

area) in lossless media are expressed as44,45,56

EnðtÞ ¼ �
X3

m¼1

<ð~rmnÞ<ð~umÞ; (22)

where < denotes the real part of the argument and the sub-

scripts 1–3 correspond to the x, y, and z directions, respec-

tively. The intensity is computed by time-averaging the

energy flux over one period

In ¼
x
2p

ðt0þ2p=x

t0

En sð Þds; (23)

where t0 is an arbitrary time.

An inviscid fluid cannot support shear stresses, so by

using the pressure (~p ¼ �~rxx ¼ �~rzz), the tangential and

normal intensities can be computed conveniently as Ix

¼ <ð~p~u�xÞ=2 and Iz ¼ <ð~p~u�z Þ=2, where the asterisk denotes

the complex conjugate. In the solid, however, these expres-

sions cannot be used, as the contributions of the shear stresses

to the energy flux must be taken into account.44,56 The longi-

tudinal and transverse waves propagate with different wave-

numbers along the respective dimensions and the phase

difference must be incorporated by time-averaging according

to Eq. (23), where the instantaneous intensities are Ex

¼ �½<ð~rxxÞ<ð~uxÞ þ <ð~rxzÞ<ð~uzÞ� and Ez ¼ �½<ð~rzzÞ<ð~uzÞ
þ<ð~rxzÞ <ð~uxÞ�.

For the incident evanescent waves under consideration,

the transmitted normal wavenumbers (i.e., ~k2;z and, in the

case of the solid, ~j2;z) have both propagating and decaying

components, corresponding to their real and imaginary parts,

respectively. Energy thus propagates away from the interface

and into the second material. In terms of the normal intensity

expression, the normal particle velocity is related to the

wave pressure by the normal wavenumber. When the real

part is taken in computing the intensity, the real (propagat-

ing) component of the normal wavenumber yields nonzero

intensity transmission across the material interface.

Conversely, for the case of homogeneous waves incident

beyond the critical angle, the transmitted normal wavenum-

ber is purely imaginary and no energy is transmitted; all of

the energy is reflected back into the incident medium.

D. Energy conservation in the system

If energy is to be conserved, the energy fluxes approach-

ing and leaving the interface, which are given by the normal

intensities Iz in the two media taken at z¼ 0, must balance.

Since the boundary conditions at the interface require conti-

nuity of the normal particle velocity and continuity of the

stress tensor, it can be readily observed from Eq. (22) that

the normal intensities are equal at z¼ 0, and energy is con-

served at the interface.
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Moreover, energy conservation in the media in the pres-

ence of the evanescent disturbances can also be demon-

strated. It can be shown that, in the absence of material

dissipation, there is no net energy flux through any closed

control surface S, which may be constructed in either me-

dium or which may stretch across the interface, since the

energy flux is continuous through the interface plane.44,45

(The uppercase S used to denote the control surface should

not be confused with the lowercase s used in subscripts to

denote quantities associated with shear waves.) The net

energy flux through the closed surface is thus given by the

surface integralðð
�

S

~I l � d~S ¼ 0; (24)

where d~S is the differential area element on the control sur-

face, oriented along the outward normal vector to the sur-

face, and l denotes the appropriate medium for the given

differential element of S. For the case of two-dimensional

propagation in the xz plane, there is no variation in the y
direction, and the control surface can be replaced by a closed

curve C in the xz plane. (The uppercase C used to denote the

closed curve should not be confused with the lowercase c
used to denote longitudinal wave speeds.) The surface inte-

gral is therefore replaced by a line integral to give the net

energy flux per unit widthþ
C

~I l � d~C ¼ 0; (25)

where d~C is the differential line element of the curve, ori-

ented along the outward normal vector.

IV. RESULTS AND DISCUSSION

The transmitted intensities were investigated for the air-

water interface and for various parameters that characterize

typical air-solid interfaces. For the air-water interface, the

pressure and normal particle velocity distributions in the

water medium were also considered. For the air-solid interfa-

ces, the normal stress distributions in the solid were consid-

ered, along with the normal particle velocity and intensity

distributions. In the case of the solid media, conditions for

zero reflection at the interface, and consequently total trans-

mission of the incident normal intensity, were additionally

explored.

A. Air-water interface

Methods of energy transmission from the incident air me-

dium into water may be of interest in numerous applications,

but are limited for homogeneous plane waves by the critical

angle criterion. Considered here is the case of air at 20 �C and

1 atm (q1 ¼ 1:21 kg=m3; c1 ¼ 343 m/s), and fresh water

under the same conditions (q2 ¼ 998 kg=m3; c2 ¼ 1481 m/

s).11 The critical angle for the interface is hcr � 13:4�. The

incident evanescent plane wave is given a pressure amplitude

of ~A ¼ 1 Pa and a frequency of f¼ 1000 Hz (f ¼ x=2p). The

transmitted (and incident) pressures and velocities scale with

the incident pressure magnitude j ~Aj, and the intensities scale

with j ~Aj2.

The transmitted normal intensity at the interface (i.e., at

z¼ 0) and at the tangential position x¼ 0 was first consid-

ered as a function of the incidence angle component h1;r,

which gives the physical angle of propagation according to

Eq. (7). Figure 4 shows the transmitted normal intensity (at

x ¼ z ¼ 0) as a function of the angle h1;r for several values

of the decay parameter: b¼ 0, 0.001, 0.01, and 0.02 rad/m,

where the case of a homogeneous plane wave (b¼ 0) is

included to allow for direct comparison. It should be

noted that the intensities of the evanescent waves vary

with x and z according to the equations highlighted in the

preceding text. Below the critical angle, the evanescent

wave intensities are close to those of homogeneous plane

waves at the same incidence angles, with little variation

with b. Above the critical angle, however, the intensity

transmission from evanescent waves remains nonzero

and increases with b, although larger values of b also

yield more rapid decay with distance into the second me-

dium. The transmitted intensities monotonically decrease

with increasing incidence angles beyond the critical

angle.

Energy conservation in the second medium is verified

here by using an arbitrary sample control volume. Since

there is no variation in the y direction, a closed curve C was

constructed and the net energy fluxes were given per unit

width. The sample curve utilized here took the form of a rec-

tangle in the xz plane, stretching from x¼ 0.5 to 1.5 m and

from z¼ 0 to 0.25 m, as shown in Fig. 5. By using Eq. (25),

the intensity vector in the second medium ~I2ðx; zÞ, and the

unit vectors along the respective coordinate axes (êx and êz),

the net energy fluxes in units of W/m entering and leaving

the planar region ( _QI and _QII, respectively) are given, with

the sign convention, as

FIG. 4. (Color online) The transmitted normal intensity, at the interface and

at tangential position x¼ 0, as a function of the incidence angle for the air-

water interface. The markers as �’s, triangles, and squares on the curves

correspond to values of the decay parameter of 0.001, 0.01, and 0.02 rad/m,

respectively. The unmarked curve corresponds to a homogeneous plane

wave (i.e., no decay). Note that a logarithmic scale has been used for the

vertical axis.
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_QI ¼
ð0:25

0

~I2ð0:5; zÞ � êx dzþ
ð1:5

0:5

~I2ðx; 0Þ � êz dx

¼
ð0:25

0

I2;xð0:5; zÞ dzþ
ð1:5

0:5

I2;zðx; 0Þ dx;

_QII¼
ð0:25

0

~I2ð1:5; zÞ � êx dzþ
ð1:5

0:5

~I2ðx; 0:25Þ � êz dx

¼
ð0:25

0

I2;xð1:5; zÞ dzþ
ð1:5

0:5

I2;zðx; 0:25Þ dx; (26)

where the position values are given in m. The results of the

computation are presented in Fig. 6 as a function of the inci-

dence angle, with the decay parameter set at a nominal value

of b ¼ 0:01 rad/m. It can be readily observed that the energy

flux entering the volume matches the flux exiting the vol-

ume, so energy conservation is verified.

The transmitted pressure, normal particle velocity, and

normal intensity distributions were also investigated for

subcritical and supercritical angles, with the decay parame-

ter set at the nominal value of b ¼ 0:01 rad/m. Figure 7

gives the pressure, velocity, and intensity distributions in

the second medium (water) at a subcritical angle of

FIG. 5. (Color online) A sample closed curve constructed in the xz plane in

the second medium.

FIG. 6. (Color online) The net energy flux per unit width entering and leav-

ing the sample control volume in water. The solid line and the markers as

circles represent the net energy fluxes entering and leaving the volume,

respectively. For visual clarity, the energy flux leaving the volume is shown

with data points only at 0:5� increments.

FIG. 7. (Color online) The subcritical transmitted distributions of (a) pres-

sure (in Pa), (b) normal velocity (in m/s), and (c) normal intensity (in W/m2)

for the air-water interface. The subcritical angle is 5� and the decay parame-

ter is 0.01 rad/m.
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h1;r ¼ 5�. The transmitted pressure wave propagates at an

angle of approximately 22:1�. It can be observed that the

normal particle velocity distribution is similar to that of the

pressure, with a small phase difference introduced by the

decay of the incident wave. The spatial dependence of the

incident wave intensity can be conceptualized as lines of

constant intensity along the direction of propagation that

are refracted at the interface to yield the transmitted inten-

sity distribution shown in Fig. 7(c). The normal intensity of

the transmitted wave is thus constant along the direction of

propagation but decays perpendicular to that direction. It

should be noted that the spatial decay of the intensity, like

the decay of the incident wave pressure, is a characteristic

of the disturbance itself and that no dissipation is included

in the second medium. At a given tangential position x, the

intensity decays with distance into the second material, and

the rate of decay is relatively small for the large area

shown.

The transmitted pressure, normal velocity, and normal

intensity distributions are presented in Fig. 8 for the super-

critical angle h1;r ¼ 15�. The decay parameter was again set

at b ¼ 0:01 rad/m. In this case, the transmitted wave propa-

gates at an angle of approximately 89:7�. The angle is close

to, but slightly less than, 90� (i.e., along the interface), so

nonzero energy transmission occurs above the critical angle.

The pressure and velocity distributions are out of phase with

each other, and show the transmitted wave propagating at

the slight angle with respect to the interface plane. The

amplitudes peak at the interface and decay along a vector

nearly aligned with the normal distance into the second me-

dium. The refracted lines of constant intensity again lie

along the direction of propagation, and as a result are slightly

offset from the interface, as shown in Fig. 8(c). Note that the

angle of propagation, although still barely evident as deviat-

ing from the tangential axis, is exaggerated in the intensity

plot since the horizontal position range is narrower than that

of the vertical position. Like the pressure and velocity, the

normal intensity distribution decays approximately normal

to the interface but, since the pressure and velocity are out-

of-phase, it does not show the same spatial variation near the

interface. The intensity transmission for most supercritical

angles is considerably less than that for the subcritical

angles, but remains finite.

B. Air-solid interface

Energy transmission from air into solid materials is also

of interest. The incident air medium is again taken at 20 �C
and 1 atm (q1 ¼ 1:21 kg=m3; c1 ¼ 343 m/s). Solid materials

typically have densities at least 1000 times that of air, and

longitudinal wave speeds at least 10 times the speed of sound

in air. The density and longitudinal wave speed in the solid

medium were thus set at q2 ¼ 1210 kg=m3 (q2=q1 ¼ 1000)

and c2 ¼ 3430 m/s (c2=c1 ¼ 10), respectively. The shear

wave speed in the solid was taken as b2 ¼ 2400 m/s

(b2=c1 ¼ 7). The critical angles for the interface are hcr

� 5:7� for transmitted longitudinal waves and hcr;s � 8:2�

for transmitted shear waves. The incident wave was again

given a pressure amplitude of ~A ¼ 1 Pa and a frequency of

f¼ 1000 Hz.

As for the air-water interface, the transmitted normal in-

tensity, taken at the interface (i.e., at z¼ 0) and at the tangen-

tial position x¼ 0, was investigated as a function of the

FIG. 8. (Color online) The supercritical transmitted distributions of (a) pres-

sure (in Pa), (b) normal velocity (in m/s), and (c) normal intensity (in W/m2)

for the air-water interface. The supercritical angle is 15� and the decay pa-

rameter is 0.01 rad/m. Note that the horizontal axis on the intensity plot

shows the decay over only the first 1 m away from the interface.
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incidence angle component h1;r. The normal intensity is

shown in Fig. 9 for decay parameter values of b¼ 0, 0.001,

0.01, and 0.02 rad/m, where the case of a homogeneous

plane wave (b¼ 0) is again included for comparison. The

evanescent wave intensities are again close to those of ho-

mogeneous plane waves for incidence below the critical

angles, with negligible variation with b. Between the critical

angles, hcr � 5:7� and hcr;s � 8:2�, the intensities remain

close to those of homogeneous plane waves, since the trans-

mitted transverse waves dominate in this regime. However,

whereas the transmission from homogeneous waves goes to

zero above the critical angle for transverse waves, the inten-

sities from evanescent waves drop significantly slightly

above that angle before climbing to a peak near 9:4�, which

is the Rayleigh angle as predicted by the wave speed in Eq.

(14). At this angle, the incident wave is coincident with the

resonance phenomenon of coupled longitudinal and shear

waves in the solid half-space. This condition corresponds to

a minimum in the reflection coefficient and consequently

maximum intensity transmission, which is discussed in depth

in Sec. D. Above the supercritical peak, the transmitted

intensities monotonically decrease with further increasing

incidence angles.

Energy conservation in the solid medium is verified

here, again by using the sample control volume shown in

Fig. 5. The intensity vector in the solid ~I2ðx; zÞ is computed

with Eq. (23), and the net energy fluxes entering and leaving

the planar region are again given by Eq. (26). The results of

the computation are given in Fig. 10 as a function of the inci-

dence angle, where the decay parameter is set at b ¼ 0:01

rad/m. A large increase in energy flux is observed at the

Rayleigh angle, attributable to the minimum in the reflection

coefficient and the increased intensity transmission. As with

the fluid medium considered in the preceding text, it can be

readily observed that the energy flux entering the control

volume matches the flux exiting, so energy conservation in

the solid is verified as well.

Figure 11 depicts the transmitted normal stress, normal

particle velocity, and normal intensity distributions for a

supercritical angle of h1;r ¼ 15� with a decay parameter of

b ¼ 0:01 rad/m. The transmitted longitudinal wave propa-

gates at an angle of approximately 89:87�, and the transmit-

ted shear wave propagates at approximately 89:86�, each

less than 90�, thus permitting energy transmission into the

solid medium. The transmitted shear angle is always less

than the transmitted longitudinal angle, provided the longitu-

dinal wave speed in the solid is greater than the shear wave

speed, and both angles asymptotically approach 90� as the

incidence angle is increased toward grazing. Due to the

interaction of the transmitted longitudinal and shear waves,

the transmitted normal stress peaks at a small distance (i.e., a

fraction of a wavelength) beneath the interface surface. As

with the air-water interface, the normal velocity is out-of-

phase with the stress, which is evident in the intensity distri-

bution. The lines of constant intensity in the incident wave

can again be conceptualized as refracted in the second me-

dium, but due to the contributions from the transmitted shear

wave, the interaction in the solid is more complex. The in-

tensity, however, likewise decays with distance into the sec-

ond medium, at a slight angle with respect to the interface

plane, with the angle again exaggerated in Fig. 11(c) since

the horizontal position range is narrower than the vertical

range. Also as with the air-water case, no dissipation was

incorporated in the solid medium and the spatial decay of

the normal intensity is solely a consequence of using inci-

dent waves with spatially dependent pressure amplitudes.

C. Effects of frequency, decay rate, and material
properties

The effects of the frequency, incident wave decay rate,

and density and wave speed ratios for the air-solid interface

were considered as well. For these investigations, the inci-

dent wave in air (q1 ¼ 1:21 kg=m3; c1 ¼ 343 m/s) was again

given a pressure amplitude of ~A ¼ 1 Pa. In addition, except

FIG. 9. (Color online) The transmitted normal intensity, at the interface and

at tangential position x¼ 0, as a function of the incidence angle for the air-

solid interface. The markers as �’s, triangles, and squares on the curves cor-

respond to values of the decay parameter of 0.001, 0.01, and 0.02 rad/m,

respectively. The unmarked curve corresponds to a homogeneous plane

wave (i.e., no decay). Note that a logarithmic scale has been used for the

vertical axis.

FIG. 10. (Color online) The net energy flux per unit width entering and leav-

ing the sample control volume in the solid. The solid line and the markers as

circles represent the net energy fluxes entering and leaving the volume,

respectively. For visual clarity, the energy flux leaving the volume is shown

with data points only at 0:5� increments. Note that a logarithmic scale has

been used for the vertical axis.
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where the parameters are varied, the nominal values are

taken as follows: frequency f¼ 1000 Hz, decay parameter

b ¼ 0:01 rad/m, density ratio q2=q1 ¼ 1000, longitudinal

wave speed ratio c2=c1 ¼ 10, and shear wave speed ratio

b2=c1 ¼ 7. For each parameter, three values of the incidence

angle were used: h1;r ¼ 5�; 15�, and 30�. For all cases, the

transmitted normal intensity is presented at the interface

(i.e., at z¼ 0) and at the tangential position x¼ 0.

The frequency was varied in the range from f¼ 100 to

1500 Hz. The normal intensity as a function of frequency is

presented in Fig. 12(a). For the subcritical angle of 5�, the

frequency has a negligible effect on the intensity at the inter-

face, with only a slight decrease with increasing frequency,

attributable to the decaying component of the incident evan-

escent wave. However, for all angles, the frequency signifi-

cantly impacts the spatial variation in the second medium

(with shorter variations and more rapid decay observed at

higher frequencies), and affects the incident wave potential

amplitude ~K, according to its relation with the pressure am-

plitude ( ~A ¼ �jxq1
~K). For the supercritical angles, the nor-

mal intensities can be observed to monotonically decrease

with increasing frequencies and to also decrease for increas-

ing incidence angles.

FIG. 11. (Color online) The transmitted distributions of (a) normal stress (in

Pa), (b) normal velocity (in m/s), and (c) normal intensity (in W/m2) for the

air-solid interface at a supercritical angle of 15�. The decay parameter is set

to 0.01 rad/m. Note that the horizontal axis on the intensity plot shows the

decay over only the first 1 m away from the interface.

FIG. 12. (Color online) The transmitted normal intensity, at the interface

and at tangential position x¼ 0, as a function of (a) frequency and (b) decay

parameter. The markers as exes, triangles, and squares on the curves corre-

spond to values of the incidence angle of 5�; 15�, and 30�, respectively.

Note that a logarithmic scale has been used for the vertical axes and for the

horizontal axis in (b).
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To explore the effect of the decay rate, the decay param-

eter was chosen to remain small and was varied in the range

of b ¼ 10�5 to 10�1 rad/m. The normal intensity as a func-

tion of the decay parameter is given in Fig. 12(b). In a simi-

lar way to the frequency, the decay rate has a negligible

impact on the intensity at the interface for the subcritical

angle, with slight increases for increasing decay rates. At

supercritical angles, a larger effect is evident, with dramatic

increases in intensity with increasing decay rates, and with

intensities again lower for larger incidence angles. However,

when increasing the decay rate of the incident wave, the

transmitted waves will decay at a greater rate with distance

into the second medium. The transmitted energy is thus

increasingly concentrated near the surface for increasing

decay rates.

Finally, the effects of the density and wave speed ratios

of the interface materials were investigated. The density ra-

tio was varied from q2=q1 ¼ 10 to 104 to represent a range

of typical solid materials, including some high-density sol-

ids. Steel and lead, for example, have density ratios of

around 6400 and 9300, respectively.11 By similar considera-

tions, the longitudinal wave speed ratio was varied from

c2=c1 ¼ 10 to 20, and the shear wave speed ratio from

b2=c1 ¼ 5 to 10, to not exceed the longitudinal ratio. The

normal intensities as functions of the density ratio, longitudi-

nal wave speed ratio, and shear wave speed ratio are pre-

sented in Figs. 13(a), 13(b), and 13(c), respectively. As the

density ratio is increased, the difference in the surface nor-

mal impedances of the two media also increases, and there-

fore, more of the intensity is reflected back into the incident

medium and less is transmitted. As such, the transmitted nor-

mal intensity decreases with increasing density ratio, which

is evident in Fig. 13(a). Similarly, increasing the longitudinal

wave speed ratio yields greater reflection of the incident in-

tensity, and also greater refraction of the transmitted longitu-

dinal waves, which can be observed for the supercritical

angles in Fig. 13(b). In the case of the h1;r ¼ 5� curve in Fig.

13(b), the incidence angle is initially subcritical at

c2=c1 ¼ 10, but as the wave speed ratio is increased, the

angle becomes coincident with the longitudinal critical angle

at c2=c1 � 11:4 (which corresponds to the local decrease in

the curve). Above that value, the angle becomes supercritical

for longitudinal waves but remains subcritical for transverse

waves. Consequently, above the coincident value, shear

waves dominate in the second medium and the normal inten-

sity increases with further increasing longitudinal wave

speed ratios. With respect to the shear wave speed ratio

effect in Fig. 13(c), the variation in the normal intensity is

due to the change in the longitudinal wave–shear wave inter-

action with changes in the shear ratio. The variation for the

subcritical angle mirrors that of the supercritical angles, but

on a much larger scale. Note that the supercritical angles

remain supercritical for both longitudinal and shear waves

for all of the shear wave speed values shown. The peaks that

are evident for the supercritical angles are due to the minima

in the reflection coefficient for the respective incidence

angles. The minimum in the reflection coefficient is dis-

cussed in Sec. IV D.

D. Conditions for zero reflection

In the case of the fluid-solid interface, for a prescribed

value of the incident wave decay rate, a minimum in the

reflection coefficient can be located at a supercritical angle

of incidence. The minimum corresponds to the resonance

FIG. 13. (Color online) The transmitted normal intensity, at the interface

and at tangential position x¼ 0, as a function of (a) density ratio, (b) longitu-

dinal wave speed ratio, and (c) shear wave speed ratio. The markers as exes,

triangles, and squares on the curves correspond to values of the incidence

angle of 5�; 15�, and 30�, respectively. Note that a logarithmic scale has

been used for the vertical axes and for the horizontal axis in (a).
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phenomenon of the coupled longitudinal and shear motions

in the solid half-space, which occurs at the Rayleigh

angle.41,45 In terms of the impedances, the local minimum is

the point at which the surface normal impedance of the inci-

dent wave is closely matched by the sum of the impedance

contributions from the transmitted longitudinal and shear

waves, and, as such, the effect is not observed for the fluid-

fluid interface. In fact, for the fluid-solid interface, the decay

rate and incidence angle can be varied to locate a set of val-

ues for which the reflection coefficient goes to zero (i.e.,

exact matching of the incident impedance), which depend on

the material properties that characterize the two media. The

corresponding decay rate and incidence angle values conse-

quently yield total transmission of the incident normal inten-

sity, since none of the incident energy is reflected.

This phenomenon is shown here for the example of the

air-solid interface considered previously. The properties of

air are again specified as density q1 ¼ 1:21 kg=m3 and longi-

tudinal wave speed c1 ¼ 343 m/s. The properties of the solid

medium are likewise again set as density q2 ¼ 1210 kg=m3

(q2=q1 ¼ 1000), longitudinal wave speed c2 ¼ 3430 m/s

(c2=c1 ¼ 10), and shear wave speed b2 ¼ 2400 m/s (b2=c1

¼ 7). As before, the pressure amplitude of the incident wave

is ~A ¼ 1 Pa and the frequency is f¼ 1000 Hz.

The location of the zero in the reflection coefficient ~V
was found numerically through variation of the decay pa-

rameter b and the incidence angle h1;r. The values at which

the zero occurs are, approximately: b? � 1:07� 10�4 rad/m

and h?1;r � 9:3657�. The value of the incidence angle is in

agreement with the Rayleigh angle, as predicted by Eq. (14).

The topology of the magnitude of the reflection coefficient

in the immediate locale of the zero point is shown in Fig. 14.

It can be observed that the magnitude increases steeply away

from the local minimum, as the ranges shown of the input

parameters are narrow. However, the reduction of the reflec-

tion coefficient across much wider ranges of the angle and

decay rate yields significant increases in the intensity trans-

mission in those wider domains, as is evidenced by the

region near the peaks in Fig. 9. Note that, in Fig. 9, dramatic

increases in the intensity are observed even for decay rates

that far exceed the value of b?. In addition, sources creating

a band of incidence angles and decay rate components may

FIG. 14. (Color online) The magnitude of the reflection coefficient near the

zero point as a function of the incidence angle and decay parameter for the

air-solid interface.

FIG. 15. (Color online) The transmitted distributions of (a) normal stress (in

Pa), (b) normal velocity (in m/s), and (c) normal intensity (in W/m2) near

the reflection coefficient zero point for the air-solid interface. Note that the

horizontal axis on the intensity plot shows the decay over only the first 3 m

away from the interface.
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be used in practice to exploit the phenomenon around the

zero point for increased energy transmission.

Much greater values of the transmitted normal stress, as

well as the normal intensity, can be achieved for incidence

angles and decay rates near the zero of the reflection coeffi-

cient. With reference to Eq. (19), at the minimum, the im-

pedance contributions from the transmitted longitudinal and

shear waves cancel that of the incident wave to yield a zero

in the numerator of ~V . Consequently, the denominator of the

transmission coefficients (excluding the density ratio) is 2 ~Z1,

and the transmitted normal stress terms in Eq. (20) are pro-

portional to ~Z2= ~Z1 and ~Z2;s= ~Z1, which are large ratios for the

high impedance difference (note that the density ratio in the

coefficient equations cancels with that in the stress equation,

and enters in the coefficient equations as a consequence of

converting the stress to the wave potential). The transmitted

normal stress, normal particle velocity, and normal intensity

distributions are presented in Fig. 15 for those parameters

corresponding to the approximate zero point. In addition to

the much greater amplitudes, the peak in the transmitted

stress is shifted a greater distance beneath the interface sur-

face for the case of zero reflection. The transmitted normal

intensity near the interface is on the order of 10�3 W=m2,

more than 1500 times that transmitted at subcritical angles

by homogeneous waves. The zero point corresponds to total

intensity transmission, as no reflected wave is generated.

Values of the decay rate and incidence angle away from the

zero point, as expected, yield less intensity transmission.

But, again referring to the peaks observed in Fig. 9, com-

pared to homogeneous waves, the intensity transmission is

increased dramatically across reasonable ranges of the input

parameters. In the case of the incident evanescent waves,

however, the intensity decays normal to the surface at a rate

which increases with the decay parameter b.

V. CONCLUSIONS

A model for the transmission of low-frequency, evanes-

cent plane waves across fluid-fluid and fluid-solid material

interfaces has been presented. For both interfaces, nonzero

energy transmission was shown to occur for all oblique

angles of incidence, owing to the introduction of a decaying

component in the incident wave, which yields a nonzero

propagating (real) part of the transmitted normal wavenum-

ber even above the critical angle. Numerical results were

presented that demonstrate the phenomena for the air-water

interface and for typical air-solid interfaces. The transmitted

intensities decay with distance into the media below the

interface, attributable to the spatial decay characteristics of

the incident and transmitted waves, but the intensities remain

nonzero for all such angles of incidence. The rate of decay in

the second medium depends on the frequency, angle, and

decay rate of the incident wave as well as on the interface

material properties. For the fluid-solid interface, an inci-

dence angle and decay rate could be found for which the

reflection coefficient is zero and intensity transmission is

maximized, to yield energy transmission on the order of

1500 times that from homogeneous waves at subcritical inci-

dence. This phenomenon at the Rayleigh angle is attributable

to the spatial resonance that occurs when the excitation is

coincident with the coupled free wave solution, and the

transmitted bulk evanescent waves provide a mechanism for

energy propagation beyond the material interface.

Potential applications of the air-water interface results

include extensions or improvements to existing efforts, such

as the detection of aircraft using underwater sensors.1,2

Energy transmission decreases with increasing incidence

angles, particularly above the critical angle, but remains fi-

nite to allow for a wide range of incidence angle compo-

nents. The subsurface peak in the transmitted stress for the

air-solid interface, which is due to the interaction of the

transmitted longitudinal and shear waves, may prove useful

in a number of applications, for example, in medical applica-

tions that could include subsurface ablation,57–59 diagnostics

of pulmonary conditions,60 and sound therapy in bone heal-

ing.61,62 Similarly, the zero in the reflection coefficient for

the air-solid interface may be utilized in applications that

seek to maximize energy transmission, as it yields substan-

tial increases over classical, homogeneous waves. As noted,

this phenomenon can be exploited for significant transmis-

sion increases not only at the zero point, but also in the sur-

rounding neighborhood of incidence angles and decay rates.

Applications under development may also make use of the

large transmission distances of low-frequency waves for

stand-off energy transmission above the critical angle. For

instance, in the context of trace vapor detection of hidden

explosives, it has been suggested that low-frequency stand-

off acoustic excitation, which can penetrate metal barriers,

may be able to heat target energetic materials to increase

vapor pressures and so facilitate detection.63–67

Future work will attempt to extend the results included

here to finite media, which is of particular interest for media

with dimensions on the order of (or smaller than) an acoustic

wavelength, and also account for dissipation and inhomoge-

neities in the materials. The work will also consider the use

of finite, spatially distributed waves, such as Gaussian

beams.49–52 In addition, sound field reproduction techniques,

including those analogous to methods for classical plane

waves and random pressure fields,68–71 will be further

explored for evanescent waves. This work will continue the

investigation of methods of energy transmission across high

impedance-difference interfaces through theory and

experimentation.
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APPENDIX: CALCULATION OF TRANSMITTED
WAVEVECTORS

For two-dimensional propagation in the xz plane, the

transmitted wavevector can be computed using the condition

for trace wavenumber continuity, ~k1;x ¼ ~k2;x, and the
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condition for the material wavenumber, Eq. (3). The trans-

mitted trace wavenumber ~k2;x is simply that of the incident

wave. By using the material wavenumber of the second me-

dium k2 and Eq. (3), the transmitted normal wavenumber is

~k2;z ¼ 6ðk2
2 � ~k

2

2;xÞ
1=2; (A1)

where the sign should be chosen to yield a negative imagi-

nary part, which represents decay with distance into the sec-

ond medium.

In the case of the solid medium on the transmission side

of the interface, the shear wavevector must also be com-

puted. Again using the condition for trace wavenumber con-

tinuity, the transmitted shear trace wavenumber ~j2;x is also

that of the incident wave: ~j2;x ¼ ~k1;x. And with the material

shear wavenumber j2, the transmitted shear normal compo-

nent can likewise be computed as

~j2;z ¼ 6ðj2
2 � ~j2

2;xÞ
1=2; (A2)

with the sign again chosen to yield a negative imaginary

part.

For evanescent waves that decay along the line perpen-

dicular to the direction of propagation, the transmitted angles

can be computed directly, which can in turn be used to calcu-

late the normal wavenumbers: ~k2;z ¼ k2 cosð~h2Þ and, for the

solid, ~j2;z ¼ j2 cosð~c2Þ. By writing the material wavenum-

bers in the trace wavenumber continuity equation, Eq. (16),

in terms of the frequency and wave speeds, the frequency de-

pendence in the relation can be eliminated. Also, by expand-

ing the sine terms, as in Eq. (5), and equating the real and

imaginary parts, one obtains

sin h2;rð Þ ¼ c2

c1

cosh h1;ið Þ
cosh h2;ið Þ

� �
sin h1;rð Þ;

cos h2;rð Þ ¼ c2

c1

sinh h1;ið Þ
sinh h2;ið Þ

� �
cos h1;rð Þ: (A3)

It is assumed here that the real part h1;r of the incidence

angle is positive and, thus, the imaginary part h1;i must also

be positive to yield decay into the second medium. If the

real part h1;r were negative, then h1;i would also be negative.

In that case, the negative root in the transmitted angle com-

ponent h2;i would be chosen as the physical solution, again

to yield decay with distance into the second material: but

otherwise the computations are the same as those presented

here.

The real part h2;r of the transmitted angle satisfies the

trigonometric identity

sin2ðh2;rÞ þ cos2ðh2;rÞ ¼ 1; (A4)

and the substitution of the expressions from Eq. (A3) yields

cosh h1;ið Þ
cosh h2;ið Þ

� �2

sin2 h1;rð Þ þ
sinh h1;ið Þ
sinh h2;ið Þ

� �2

cos2 h1;rð Þ

¼ c1

c2

� �2

: (A5)

Since the incidence angle ~h1 ¼ h1;r þ jh1;i is known, h2;i

is the only unknown quantity in Eq. (A5). The equation can

be solved for any values of the wave speed ratio and inci-

dence angle. Note first that the solution for h2;i must be real,

owing to the expanded form of the transmitted angle,
~h2 ¼ h2;r þ jh2;i. At h2;i ¼ 0, the value of the left-hand side

of Eq. (A5) is infinite. As h2;i is increased from zero, the val-

ues of coshðh2;iÞ and sinhðh2;iÞ increase monotonically, so

the left-hand side decreases monotonically. Therefore, h2;i

can be increased until the value of the left-hand side matches

the finite, positive value of the right-hand side, ðc1=c2Þ2, to

yield the unique solution h?2;i. The equation has even symme-

try in h2;i, as each term in Eq. (A5) is squared. However, the

physical solution is the positive root in h2;i, which yields

decay of the wave with distance into the second medium.

Equation (A5) can thus be solved numerically for the unique

positive real root to yield the solution h?2;i, which was the

approach taken here. [Note, however, that Eq. (A5) can alter-

natively be expressed in terms of exponentials by using the

definitions of the hyperbolic functions. The resulting equa-

tion is eighth-order in h2;i, with even symmetry, which can

be solved in closed form to yield up to eight distinct roots, of

which the physical solution is the unique positive real root.]

To solve for the real part of the transmitted angle h2;r,

either of the expressions in Eq. (A3) can be inverted. By

using the sine expression, the solution h?2;r is given by

h?2;r ¼ arcsin
c2 cosh h1;ið Þsin h1;rð Þ

c1 cosh h?2;i
� �

" #
: (A6)

For the solid medium, the transmitted shear angle,

~c2 ¼ c2;r þ jc2;i, can be computed by the same method. The

quantities h2;r; h2;i, and c2 should be replaced by c2;r; c2;i,

and b2, respectively, in Eqs. (A3)–(A6).
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