621 research outputs found
Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn
Recent experiments revealed that Mn3Sn and Mn3Ge exhibit a strong anomalous Hall effect at room temperature, provoking us to explore their electronic structures for topological properties. By ab initio band structure calculations, we have observed the existence of multiple Weyl points in the bulk and corresponding Fermi arcs on the surface, predicting antiferromagnetic Weyl semimetals in Mn3Ge and Mn3Sn. Here the chiral antiferromagnetism in the Kagome-type lattice structure is essential to determine the positions and numbers of Weyl points. Our work further reveals a new guiding principle to search for magnetic Weyl semimetals among materials that exhibit a strong anomalous Hall effect
Effect of diluent type, cryoprotectant concentration, storage method and freeze/thaw rates on the post-thaw quality and fertility of cryopreserved alpaca spermatozoa
This study compared protocols for cryopreservation of ejaculated, papain-treated alpaca spermatozoa. This included different concentrations of egg yolk (EY; 5, 10 or 15%) and glycerol (2, 5 or 10%), diluent types (SHOTOR, lactose, skim milk or INRA-96™), freeze rates (2, 4 or 8 cm above liquid nitrogen; LN), thaw rates (37 °C for 1 min or 42 °C for 20 sec) and storage vessels (pellets, 0.25 mL straws or 0.5 mL straws). Spermatozoa were assessed pre-freeze and 0, 30, 60 and 90 min post-thaw. Forty-one hembras were inseminated with either fresh, papain-treated or frozen-thawed spermatozoa. Motility was affected by EY concentration (P < 0.001), diluent type (P < 0.001), freeze rate (P = 0.003) and storage vessel (P = 0.001). Viability was affected by EY concentration (P < 0.001), diluent type (P < 0.001), storage vessel (P = 0.002) and thaw rate (P = 0.03). For artificial insemination (AI), semen was diluted 1:3 in a lactose-based diluent, with 5% EY and glycerol. Freezing was in 0.5 mL straws, 2 cm above LN for 4 min then thawing at 37 °C for 1 min. Pregnancy rates of those ovulated (n = 26) were not different (1/5 fresh, 1/4 papain-treated, 0/17 frozen-thawed; P = 0.10). Pregnancy can be achieved after AI with papain-treated spermatozoa. Further work is needed to determine the optimal dose, timing and location for insemination
Two-loop scalar self-energies in a general renormalizable theory at leading order in gauge couplings
I present results for the two-loop self-energy functions for scalars in a
general renormalizable field theory, using mass-independent renormalization
schemes based on dimensional regularization and dimensional reduction. The
results are given in terms of a minimal set of loop-integral basis functions,
which are readily evaluated numerically by computers. This paper contains the
contributions corresponding to the Feynman diagrams with zero or one vector
propagator lines. These are the ones needed to obtain the pole masses of the
neutral and charged Higgs scalar bosons in supersymmetry, neglecting only the
purely electroweak parts at two-loop order. A subsequent paper will present the
results for the remaining diagrams, which involve two or more vector lines.Comment: 26 pages, 4 figures, revtex4, axodraw.sty. Version 2: sentence after
eq. (A.13) corrected, references added. Version 3: typos in eqs. (5.17),
(5.20), (5.21), (5.32) are corrected. Also, the MSbar versions of eqs. (5.32)
and (5.33) are now include
Intrinsic and Extrinsic Factors Influencing the Dynamics of VO2 Mott Oscillators
Oscillatory devices have recently attracted significant interest as key components of computing systems based on biomimetic neuronal spiking. An understanding of the time scales underlying the spiking is essential for engineering fast, controllable, low-energy devices. However, we find that the intrinsic dynamics of these devices is difficult to properly characterize, as they can be heavily influenced by the external circuitry used to measure them. Here we demonstrate these challenges using a VO2 Mott oscillator with a sub-100-nm effective size, achieved using a nanogap cut in a metallic carbon nanotube electrode. Given the nanoscale thermal volume of this device, it would be expected to exhibit rapid oscillations. However, due to external parasitics present within commonly used current sources, we see orders-of-magnitude slower dynamics. We outline methods for determining when measurements are dominated by extrinsic factors and discuss the operating conditions under which intrinsic oscillation frequencies may be observed.</p
Multiple Dirac cones at the surface of the topological metal LaBi
The rare-earth monopnictide LaBi exhibits exotic magneto-transport properties, including an extremely large and anisotropic magnetoresistance. Experimental evidence for topological surface states is still missing although band inversions have been postulated to induce a topological phase in LaBi. In this work, we have revealed the existence of surface states of LaBi through the observation of three Dirac cones: two coexist at the corners and one appears at the centre of the Brillouin zone, by employing angle-resolved photoemission spectroscopy in conjunction with ab initio calculations. The odd number of surface Dirac cones is a direct consequence of the odd number of band inversions in the bulk band structure, thereby proving that LaBi is a topological, compensated semimetal, which is equivalent to a time-reversal invariant topological insulator. Our findings provide insight into the topological surface states of LaBi’s semi-metallicity and related magneto-transport properties
Observation of fractional spin textures in a Heusler material
Recently a zoology of non-collinear chiral spin textures has been discovered, most of which, such as skyrmions and antiskyrmions, have integer topological charges. Here we report the experimental real-space observation of the formation and stability of fractional antiskyrmions and fractional elliptical skyrmions in a Heusler material. These fractional objects appear, over a wide range of temperature and magnetic field, at the edges of a sample, whose interior is occupied by an array of nano-objects with integer topological charges, in agreement with our simulations. We explore the evolution of these objects in the presence of magnetic fields and show their interconversion to objects with integer topological charges. This means the topological charge can be varied continuously. These fractional spin textures are not just another type of skyrmion, but are essentially a new state of matter that emerges and lives only at the boundary of a magnetic system. The coexistence of both integer and fractionally charged spin textures in the same material makes the Heusler family of compounds unique for the manipulation of the real-space topology of spin textures and thus an exciting platform for spintronic and magnonic applications
Cosmic microwave background anisotropy power spectrum statistics for high precision cosmology
As the era of high precision cosmology approaches, the empirically determined
power spectrum of the microwave background anisotropy, , will provide a
crucial test for cosmological theories. We present a unified semi-analytic
framework for the study of the statistical properties of the coefficients
computed from the results of balloon, ground based, and satellite experiments.
An illustrative application shows that commonly used approximations {\it bias}
the estimation of the baryon parameter at the 1% level even for a
satellite capturing as much as % of the sky.Comment: 4 pages, 3 figures. Also available at
http://www.tac.dk/~wandelt/downloads.htm
Can we predict who will benefit from the deep inspiration breath hold (DIBH) technique for breast cancer irradiation?
Background: The objective was to explore the clinical use of an “in-house” prototype developed to monitor respiratory motion to implement the deep inspiration breath hold technique (DIBH), compare dosimetric differences, and assess whether simple anatomic metrics measured on free breathing (FB) computed tomography scan (CT) can help in selecting patients that would benefit the most from the technique.
Materials and methods: A prospective study was conducted on patients with left breast cancer with an indication of adjuvant radiotherapy for breast only. Treatment simulation consisted of four series of CTs: the first during FB and three in DIBH to assess the reproducibility and stability of apnea. Contouring was based on the RTOG atlas, and planning was done in both FB and DIBH. Dosimetric and geometric parameters were assessed and compared between FB and DIBH.
Results: From June 2020 to December 2021, 30 patients with left breast cancer were recruited. Overall, the DIBH technique presented a mean dose reduction of 24% in the heart and 30% in the left anterior descendent coronary artery (LAD) (p < 0.05). The only geometric parameter correlated to a 30% dose reduction in the mean heart dose and LAD doses was the anterolateral distance from the heart to the chest wall of at least 1.5 cm measured on FB (p < 0.0001).
Conclusion: The prototype enabled the use of the DIBH technique with dose reductions in the heart and LAD. The benefit of the DIBH technique can be predicted on FB CT by measuring the distance between the heart and chest wall at the treatment isocenter
Some general properties of the renormalized stress-energy tensor for static quantum states on (n+1)-dimensional spherically symmetric black holes
We study the renormalized stress-energy tensor (RSET) for static quantum
states on (n+1)-dimensional, static, spherically symmetric black holes. By
solving the conservation equations, we are able to write the stress-energy
tensor in terms of a single unknown function of the radial co-ordinate, plus
two arbitrary constants. Conditions for the stress-energy tensor to be regular
at event horizons (including the extremal and ``ultra-extremal'' cases) are
then derived using generalized Kruskal-like co-ordinates. These results should
be useful for future calculations of the RSET for static quantum states on
spherically symmetric black hole geometries in any number of space-time
dimensions.Comment: 9 pages, no figures, RevTeX4, references added, accepted for
publication in General Relativity and Gravitatio
- …