1,817 research outputs found

    Processes controlling metal transport and retention as metal-contaminated groundwaters efflux through estuarine sediments

    Get PDF
    Factors affecting the transport and retention of Cd, Cr, Cu, Ni, Pb and Zn in acidic groundwaters as they pass through estuarine sediments were investigated using column experiments. Acidic groundwaters caused the rapid dissolution of iron sulfide (AVS) and other iron and manganese phases from sediments that are important for metal binding and buffering. Metal breakthrough to overlying water occurred in the order of Ni\u3eZn\u3eCd\u3e\u3eCu\u3e\u3eCr/Pb. Metal transport increased as the sediment permeability increased, reflecting the low resistance to flow caused by larger sand-sized particles and the decreased abundance of metal adsorption sites on these materials. Metal mobility increased as the groundwater pH decreased, as flow rate or metal concentrations increased, and as the exposure duration increased. Groundwater Cr and Pb were promptly attenuated by the sediments, the mobility of Cu was low and decreased rapidly as sediment pH increased above 4.5, while Cd, Ni and Zn were the most easily transported to the surface sediments and released to the overlying waters. For groundwaters of pH 3, metal migration velocities through sandy sediments were generally 0.5-2% (Cr, Pb), 1-6% (Cu) and 4-13% (Cd, Ni, Zn) of the total groundwater velocity (9-700 m/year). The oxidative precipitation of Fe(II) and Mn(II) in the groundwaters did not affect metal mobility through the sediments. The results indicated that the efflux of acidic and metal-contaminated groundwater through estuarine sediments would affect organisms resident in sandy sediments more greatly than organisms resident in fine-grained, silty, sediments

    Application of surrogate methods for assessing the bioavailability of PAHs in sediments to a sediment ingesting bivalve

    Get PDF
    The usefulness of two surrogate methods for rapidly determining the bioavailability of PAHs in hydrocarbon-contaminated marine sediments was assessed. Comparisons are made between the PAHs accumulated by the benthic bivalve, Tellina deltoidalis, and the extractable-PAHs determined using a 6-h XAD-2 resin desorption method and a 4-h gut fluid mimic (GFM) extraction method. There were significant positive relationships between PAH bioaccumulation by the bivalves and sediment PAH concentrations. These relationships were not improved by normalising the sediment PAH concentrations to the organic carbon concentration. The average percentage lipid content of the bivalves was 1.47 ± 0.22% and BSAFs for total-PAHs ranged from 0.06 to 0.80 (kg OC/kg lipid). The XAD-2 and GFM methods both extracted varying amounts of PAHs from the sediments. Low concentrations of PAHs were extracted by the GFM method (0.2–3.6% of total-PAHs in sediments) and the GFM results were inadequate for generalising about the bioavailability of the PAHs in the sediments. The XAD-2 method extracted greater amounts of PAHs (3–34% of total-PAHs in sediments), however, the total-PAH concentrations in the sediments provided a better, or equally good, prediction of PAH bioaccumulation by T. deltoidalis. The results indicated that these methods required further development before they can be applied routinely as surrogate methods for assessing the bioavailability of PAHs in sediments. Future research should be directed towards lowering detection limits and obtaining comparative data for a greater range of sediment types, contaminant classes and concentrations, and organisms of different feeding guilds and with different gut chemistry

    Time-averaged copper concentrations from continuous exposures predicts pulsed exposure toxicity to the marine diatom, Phaeodactylum tricornutum: importance of uptake and elimination

    Get PDF
    Intermittent, fluctuating and pulsed contaminant discharges result in organisms receiving highly variable contaminant exposures. Current water quality guidelines are predominantly derived using data from continuous exposure toxicity tests, and most frequently applied by regulators with the assumption that concentrations from a single sampling event will provide a meaningful approach to assessing potential effects. This study investigated the effect of single and multiple (daily) dissolved copper pulses on the marine diatom, Phaeodactylum tricornutum, including measurements of copper uptake and elimination to investigate the toxic mechanism. Copper pulses of between 0.5 and 24 h and continuous exposures with equivalent 72-h time-averaged concentrations (TACs) resulted in similar biomass inhibition of P. tricornutum, with continuous exposures often being marginally more toxic. Rates of cell division generally recovered to control levels within 24 h of the copper pulse removal. Upon resuspension in clean seawater, the extracellular copper per cell decreased rapidly, whereas the intracellular copper per cell decreased slowly. Negligible loss of copper from the total algal biomass indicated that P. tricornutum did not have an effective mechanism for eliminating copper from cells, rather the intracellular copper decreased as a result of dilution by cellular division as the algal growth rate recovered. The measurement of copper uptake after 72-h exposure and kinetics of elimination thereafter suggest that continuous exposures are marginally more toxic to P. tricornutum than pulsed copper exposures with equivalent TACs because slow internalization and saturation of algal membrane transport sites results in less copper uptake into pulse-exposed cells than continuously-exposed cells coupled with dilution of internalized copper via cellular division in the post-exposure period. In the case of P. tricornutum, the results indicate that water quality guidelines for copper based on continuous exposure will be conservative when applied to short-term discharges

    DGT-induced copper flux predicts bioaccumulation and toxicity to bivalves in sediments with varying properties

    Get PDF
    Many regulatory frameworks for sediment quality assessment include consideration of contaminant bioavailability. However, the “snap-shots” of metal bioavailability provided by analyses of porewaters or acid-volatile sulfidesimultaneously extractable metal (AVS-SEM) relationships do not always contribute sufficient information. The use of inappropriate or inadequate information for assessing metal bioavailability in sediments may result in incorrect assessment decisions. The technique of diffusive gradients in thin films (DGT) enables the in situ measurement of metal concentrations in waters and fluxes from sediment porewaters. We utilized the DGT technique to interpret the bioavailability of copper to the benthic bivalve Tellina deltoidalis in sediments of varying properties contaminated with copper-based antifouling paint particles. For a concentration series of copper-paint contaminated sandy, silty-sand, and silty sediment types, DGTprobes were used to measure copper fluxes to the overlying water, at the sedimentwater interface, and in deeper sediments. The overlying water copper concentrations and DGT-Cu fluxes were shown to provide excellent exposure concentration−response relationships in relation to lethal effects occurring to the copper-sensitive benthic bivalve, T. deltoidalis. The study demonstrates the strength of the DGT technique, which we expect will become frequently used for assessing metal bioavailability in sediments

    The role of discharge variability in determining alluvial stratigraphy

    Get PDF
    We illustrate the potential for using physics-based modeling to link alluvial stratigraphy to large river morphology and dynamics. Model simulations, validated using ground penetrating radar data from the Río Paraná, Argentina, demonstrate a strong relationship between bar-scale set thickness and channel depth, which applies across a wide range of river patterns and bar types. We show that hydrologic regime, indexed by discharge variability and flood duration, exerts a first-order influence on morphodynamics and hence bar set thickness, and that planform morphology alone may be a misleading variable for interpreting deposits. Indeed, our results illustrate that rivers evolving under contrasting hydrologic regimes may have very similar morphology, yet be characterized by marked differences in stratigraphy. This realization represents an important limitation on the application of established theory that links river topography to alluvial deposits, and highlights the need to obtain field evidence of discharge variability when developing paleoenvironmental reconstructions. Model simulations demonstrate the potential for deriving such evidence using metrics of paleocurrent variance

    Application of digital PCR for public health-related water quality monitoring

    Get PDF
    Digital polymerase chain reaction (dPCR) is emerging as a reliable platform for quantifying microorganisms in the field of water microbiology. This paper reviews the fundamental principles of dPCR and its application for health-related water microbiology. The relevant literature indicates increasing adoption of dPCR for measuring fecal indicator bacteria, microbial source tracking marker genes, and pathogens in various aquatic environments. The adoption of dPCR has accelerated recently due to increasing use for wastewater surveillance of Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) -the virus that causes Coronavirus Disease 2019 (COVID-19). The collective experience in the scientific literature indicates that well-optimized dPCR assays can quantify genetic material from microorganisms without the need for a calibration curve and often with superior analytical performance (i.e., greater sensitivity, precision, and reproducibility) than quantitative polymerase chain reaction (qPCR). Nonetheless, dPCR should not be viewed as a panacea for the fundamental uncertainties and limitations associated with measuring microorganisms in water microbiology. With dPCR platforms, the sample analysis cost and processing time are typically greater than qPCR. However, if improved analytical performance (i.e., sensitivity and accuracy) is critical, dPCR can be an alternative option for quantifying microorganisms, including pathogens, in aquatic environments.Peer reviewe

    How to use the HOME Core Outcome Set for atopic dermatitis trials - a users' guide

    Get PDF
    The Harmonizing Outcome Measures for Eczema (HOME) initiative has agreed upon the core outcome set for use in atopic dermatitis (AD) clinical trials, but additional guidance is needed to maximise uptake of the core set. This article provides answers to some of the commonly asked questions about using the HOME core outcome set. It also provides data to aid interpretation of trial results and to support sample size calculations for future trials. By encouraging adoption of the core outcome set and facilitating consistent reporting of outcome data, we hope that results of eczema trials will be more comprehensive and readily combined in meta-analyses and patient care will be improved

    Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male's odour

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Among invertebrates, specific pheromones elicit inherent (fixed) behavioural responses to coordinate social behaviours such as sexual recognition and attraction. By contrast, the much more complex social odours of mammals provide a broad range of information about the individual owner and stimulate individual-specific responses that are modulated by learning. How do mammals use such odours to coordinate important social interactions such as sexual attraction while allowing for individual-specific choice? We hypothesized that male mouse urine contains a specific pheromonal component that invokes inherent sexual attraction to the scent and which also stimulates female memory and conditions sexual attraction to the airborne odours of an individual scent owner associated with this pheromone.</p> <p>Results</p> <p>Using wild-stock house mice to ensure natural responses that generalize across individual genomes, we identify a single atypical male-specific major urinary protein (MUP) of mass 18893Da that invokes a female's inherent sexual attraction to male compared to female urinary scent. Attraction to this protein pheromone, which we named darcin, was as strong as the attraction to intact male urine. Importantly, contact with darcin also stimulated a strong learned attraction to the associated airborne urinary odour of an individual male, such that, subsequently, females were attracted to the airborne scent of that specific individual but not to that of other males.</p> <p>Conclusions</p> <p>This involatile protein is a mammalian male sex pheromone that stimulates a flexible response to individual-specific odours through associative learning and memory, allowing female sexual attraction to be inherent but selective towards particular males. This 'darcin effect' offers a new system to investigate the neural basis of individual-specific memories in the brain and give new insights into the regulation of behaviour in complex social mammals.</p> <p>See associated Commentary <url>http://www.biomedcentral.com/1741-7007/8/71</url></p

    Acute phenanthrene toxicity to juvenile diploid and triploid African catfish (Clarias gariepinus): molecular, biochemical, and histopathological alterations

    Get PDF
    Information on the biological responses of polyploid animals towards environmental contaminants is scarce. This study aimed to compare reproductive axis-related gene expressions in the brain, plasma biochemical responses, and the liver and gill histopathological alterations in diploid and triploid full-sibling juvenile African catfish (Clarias gariepinus). Fish were exposed for 96 h to one of the two waterborne phenanthrene (Phe) concentrations [mean measured (SD): 6.2 (2.4) and 76 (4.2) μg/L]. In triploids, exposure to 76 μg/L Phe increased mRNA level of fushi tarazu-factor 1 (ftz-f1). Expression of tryptophan hydroxylase2 (tph2) was also elevated in both ploidies following the exposure to 76 μg/L Phe compared to the solvent control. In triploids, 76 μg/L Phe increased plasma alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels compared to the other Phe-exposed group. It also elevated lactate and glucose contents relative to the other groups. In diploids, however, biochemical biomarkers did not change. Phenanthrene exposures elevated glycogen contents and the prevalence of histopathological lesions in the liver and gills of both ploidies. This study showed substantial differences between diploids and triploids on biochemical and molecular biomarker responses, but similar histopathological alterations following acute Phe exposures

    Eliciting and prioritising determinants of improved care in multimorbidity: A modified online Delphi study.

    Get PDF
    BACKGROUND: Multimorbidity is a major challenge to health and social care systems around the world. There is limited research exploring the wider contextual determinants that are important to improving care for this cohort. In this study, we aimed to elicit and prioritise determinants of improved care in people with multiple conditions. METHODS: A three-round online Delphi study was conducted in England with health and social care professionals, data scientists, researchers, people living with multimorbidity and their carers. RESULTS: Our findings suggest a care system which is still predominantly single condition focused. 'Person-centred and holistic care' and 'coordinated and joined up care', were highly rated determinants in relation to improved care for multimorbidity. We further identified a range of non-medical determinants that are important to providing holistic care for this cohort. CONCLUSIONS: Further progress towards a holistic and patient-centred model is needed to ensure that care more effectively addresses the complex range of medical and non-medical needs of people living with multimorbidity. This requires a move from a single condition focused biomedical model to a person-based biopsychosocial approach, which has yet to be achieved
    corecore