151 research outputs found

    Ocean nutrient pathways associated with passage of a storm

    Get PDF
    Storms that affect ocean surface layer dynamics and primary production are a frequent occurrence in the open North Atlantic Ocean. In this study we use an interdisciplinary dataset collected in the region to quantify nutrient supply by two pathways associated with a storm event: entrainment of nutrients during a period of high wind forcing and subsequent shear-spiking at the pycnocline due to interactions of storm generated inertial currents with wind. The post-storm increase in surface layer nitrate (by ~20 mmol m?2) was predominantly driven by the first pathway: nutrient intrusion during the storm. Alignment of post-storm inertial currents and surface wind stress caused shear instabilities at the ocean pycnocline, forming the second pathway for nutrient transport into the euphotic zone. During the alignment period, pulses of high turbulent nitrate flux through the pycnocline (up to 1 mmol m?2 day?1; approximately 25 times higher than the background flux) were detected. However, the impact of the post-storm supply was an order of magnitude lower than during the storm due to the short duration of the pulses. Cumulatively, the storm passage was equivalent to 2.5-5 % of the nitrate supplied by winter convection and had a significant effect compared to previously reported (sub)-mesoscale dynamics in the region. As storms occur frequently, they can form an important component in local nutrient budgets

    Reflecting on professional development

    Get PDF
    This paper describes how a cluster of ten secondary science teachers from six different schools and colleges in the UK designed and undertook small-scale action research projects as an approach to their own Continuing Professional Development (CPD). The participating teachers identified a range of topics for investigation such as student voice, engagement and motivation in STEM (Science Technology Engineering Mathematics) learning and effective practical work. They brought their research into practice either as individuals, pairs or within a team. Central to each project was the use of reflection as a primary tool for ensuring the impact of the professional development and for stimulating a teacher-led process. Reflective practice was developed through the use of three approaches; audio sound bites, reflective blogs, and reflective discussions. The teachers used reflection as a means of self-evaluation as well as evaluation of their action research interventions. The reflective practice which the teachers engaged in enabled them to think carefully about what was taking place in a given situation during their designed interventions, to identify suitable options, and to make conscious choices about what to do in order to make a difference. The participating teachers all concluded that reflective methods that enable self-reflection as well as reflection upon designed classroom interventions are hugely beneficial to effective CPD for teachers

    Hebbian and homeostatic plasticity mechanisms in regular spiking and intrinsic bursting cells of cortical layer 5

    Get PDF
    Layer 5 contains the major projection neurons of the neocortex and is composed of two major cell types: regular spiking (RS) cells, which have cortico-cortical projections, and intrinsic bursting cells (IB), which have subcortical projections. Little is known about the plasticity processes and specifically the molecular mechanisms by which these two cell classes develop and maintain their unique integrative properties. In this study, we find that RS and IB cells show fundementally different experience-dependent plasticity processes and integrate Hebbian and homeostatic components of plasticity differently. Both RS and IB cells showed TNFα-dependent homeostatic plasticity in response to sensory deprivation, but IB cells were capable of a much faster synaptic depression and homeostatic rebound than RS cells. Only IB cells showed input-specific potentiation that depended on CaMKII autophosphorylation. Our findings demonstrate that plasticity mechanisms are not uniform within the neocortex, even within a cortical layer, but are specialized within subcircuits

    A Transcriptional Profile of Aging in the Human Kidney

    Get PDF
    In this study, we found 985 genes that change expression in the cortex and the medulla of the kidney with age. Some of the genes whose transcripts increase in abundance with age are known to be specifically expressed in immune cells, suggesting that immune surveillance or inflammation increases with age. The age-regulated genes show a similar aging profile in the cortex and the medulla, suggesting a common underlying mechanism for aging. Expression profiles of these age-regulated genes mark not only age, but also the relative health and physiology of the kidney in older individuals. Finally, the set of aging-regulated kidney genes suggests specific mechanisms and pathways that may play a role in kidney degeneration with age

    Computation of free energy differences through nonequilibrium stochastic dynamics: the reaction coordinate case

    Full text link
    The computation of free energy differences through an exponential weighting of out of equilibrium paths (known as the Jarzynski equality) is often used for transitions between states described by an external parameter λ\lambda in the Hamiltonian. We present here an extension to transitions between states defined by different values of some reaction coordinate, using a projected Brownian dynamics. In contrast with other approaches, we use a projection rather than a constraining potential to let the constraints associated with the reaction coordinate evolve. We show how to use the Lagrange multipliers associated with these constraints to compute the work associated with a given trajectory. Appropriate discretizations are proposed. Some numerical results demonstrate the applicability of the method for the computation of free energy difference profiles.Comment: 23 pages, 4 Figures, 2 Table

    Variable Pathogenicity Determines Individual Lifespan in Caenorhabditis elegans

    Get PDF
    A common property of aging in all animals is that chronologically and genetically identical individuals age at different rates. To unveil mechanisms that influence aging variability, we identified markers of remaining lifespan for Caenorhabditis elegans. In transgenic lines, we expressed fluorescent reporter constructs from promoters of C. elegans genes whose expression change with age. The expression levels of aging markers in individual worms from a young synchronous population correlated with their remaining lifespan. We identified eight aging markers, with the superoxide dismutase gene sod-3 expression being the best single predictor of remaining lifespan. Correlation with remaining lifespan became stronger if expression from two aging markers was monitored simultaneously, accounting for up to 49% of the variation in individual lifespan. Visualizing the physiological age of chronologically-identical individuals allowed us to show that a major source of lifespan variability is different pathogenicity from individual to individual and that the mechanism involves variable activation of the insulin-signaling pathway

    An Engineering Approach to Extending Lifespan in C. elegans

    Get PDF
    We have taken an engineering approach to extending the lifespan of Caenorhabditis elegans. Aging stands out as a complex trait, because events that occur in old animals are not under strong natural selection. As a result, lifespan can be lengthened rationally using bioengineering to modulate gene expression or to add exogenous components. Here, we engineered longer lifespan by expressing genes from zebrafish encoding molecular functions not normally present in worms. Additionally, we extended lifespan by increasing the activity of four endogenous worm aging pathways. Next, we used a modular approach to extend lifespan by combining components. Finally, we used cell- and worm-based assays to analyze changes in cell physiology and as a rapid means to evaluate whether multi-component transgenic lines were likely to have extended longevity. Using engineering to add novel functions and to tune endogenous functions provides a new framework for lifespan extension that goes beyond the constraints of the worm genome

    CD4+ T cell surface alpha enolase is lower in older adults

    Get PDF
    To identify novel cell ageing markers in order to gain insight into ageing mechanisms, we adopted membrane enrichment and comparison of the CD4+ T cell membrane proteome (purified by cell surface labelling using Sulfo-NHS-SS-Biotin reagent) between healthy young (n=9, 20-25y) and older (n=10; 50-70y) male adults. Following two-dimensional gel electrophoresis (2DE) to separate pooled membrane proteins in triplicates, the identity of protein spots with age-dependent differences (p1.4 fold difference) was determined using liquid chromatography-mass spectrometry (LC-MS/MS). Seventeen protein spot density differences (ten increased and seven decreased in the older adult group) were observed between young and older adults. From spot intensity analysis, CD4+ T cell surface α-enolase was decreased in expression by 1.5 fold in the older age group; this was verified by flow cytometry (n=22) and qPCR with significantly lower expression of cellular α-enolase mRNA and protein compared to young adult CD4+ T cells (p<0.05). In an independent age-matched case-control study, lower CD4+ T cell surface α-enolase expression was observed in age-matched patients with cardiovascular disease (p<0.05). An immune-modulatory role has been proposed for surface α-enolase and our findings of decreased expression suggest that deficits in surface α-enolase merit investigation in the context of immune dysfunction during ageing and vascular disease

    Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms

    Get PDF
    Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of “survival” responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension

    MicroRNA Predictors of Longevity in Caenorhabditis elegans

    Get PDF
    Neither genetic nor environmental factors fully account for variability in individual longevity: genetically identical invertebrates in homogenous environments often experience no less variability in lifespan than outbred human populations. Such variability is often assumed to result from stochasticity in damage accumulation over time; however, the identification of early-life gene expression states that predict future longevity would suggest that lifespan is least in part epigenetically determined. Such “biomarkers of aging,” genetic or otherwise, nevertheless remain rare. In this work, we sought early-life differences in organismal robustness in unperturbed individuals and examined the utility of microRNAs, known regulators of lifespan, development, and robustness, as aging biomarkers. We quantitatively examined Caenorhabditis elegans reared individually in a novel apparatus and observed throughout their lives. Early-to-mid–adulthood measures of homeostatic ability jointly predict 62% of longevity variability. Though correlated, markers of growth/muscle maintenance and of metabolic by-products (“age pigments”) report independently on lifespan, suggesting that graceful aging is not a single process. We further identified three microRNAs in which early-adulthood expression patterns individually predict up to 47% of lifespan differences. Though expression of each increases throughout this time, mir-71 and mir-246 correlate with lifespan, while mir-239 anti-correlates. Two of these three microRNA “biomarkers of aging” act upstream in insulin/IGF-1–like signaling (IIS) and other known longevity pathways, thus we infer that these microRNAs not only report on but also likely determine longevity. Thus, fluctuations in early-life IIS, due to variation in these microRNAs and from other causes, may determine individual lifespan
    corecore