2,320 research outputs found
BODIPY-based conjugated polymers for broadband light sensing and harvesting applications
The synthesis of novel low band-gap polymers has significantly improved light sensing and harvesting in polymer-fullerene devices. Here the synthesis of two low band-gap polymers based on the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene core (BODIPY), and either bis(3,4-ethylenedioxythiophene) (bis-EDOT) or its all-sulfur analogue bis(3,4-ethylenedithiathiophene) (bis-EDTT) are described. The polymers demonstrate ambipolar charge transport and are shown to be suitable for broadband light sensing and solar energy harvesting in solution-processable polymer-fullerene devices
Past East Asian monsoon evolution controlled by paleogeography, not CO2
The East Asian monsoon plays an integral role in human society, yet its geological history and controlling processes are poorly understood. Using a general circulation model and geological data, we explore the drivers controlling the evolution of the monsoon system over the past 150 million years. In contrast to previous work, we find that the monsoon is controlled primarily by changes in paleogeography, with little influence from atmospheric CO2. We associate increased precipitation since the Late Cretaceous with the gradual uplift of the Himalayan-Tibetan region, transitioning from an ITCZ-dominated monsoon to a sea breeze–dominated monsoon. The rising region acted as a mechanical barrier to cold and dry continental air advecting into the region, leading to increasing influence of moist air from the Indian Ocean/South China Sea. We show that, apart from a dry period in the middle Cretaceous, a monsoon system has existed in East Asia since at least the Early Cretaceous
Recommended from our members
Species-Specific Activity of HIV-1 Vpu and Positive Selection of Tetherin Transmembrane Domain Variants
Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh), African green monkeys (agm) and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins
Cellular expression, trafficking, and function of two isoforms of human ULBP5/RAET1G
Background:
The activating immunoreceptor NKG2D is expressed on Natural Killer (NK) cells and subsets of T cells. NKG2D contributes to anti-tumour and anti-viral immune responses in vitro and in vivo. The ligands for NKG2D in humans are diverse proteins of the MIC and ULBP/RAET families that are upregulated on the surface of virally infected cells and tumours. Two splicing variants of ULBP5/RAET1G have been cloned previously, but not extensively characterised.
Methodology/Principal Findings:
We pursue a number of approaches to characterise the expression, trafficking, and function of the two isoforms of ULBP5/RAET1G. We show that both transcripts are frequently expressed in cell lines derived from epithelial cancers, and in primary breast cancers. The full-length transcript, RAET1G1, is predicted to encode a molecule with transmembrane and cytoplasmic domains that are unique amongst NKG2D ligands. Using specific anti-RAET1G1 antiserum to stain tissue microarrays we show that RAET1G1 expression is highly restricted in normal tissues. RAET1G1 was expressed at a low level in normal gastrointestinal epithelial cells in a similar pattern to MICA. Both RAET1G1 and MICA showed increased expression in the gut of patients with celiac disease. In contrast to healthy tissues the RAET1G1 antiserum stained a wide variety or different primary tumour sections. Both endogenously expressed and transfected RAET1G1 was mainly found inside the cell, with a minority of the protein reaching the cell surface. Conversely the truncated splicing variant of RAET1G2 was shown to encode a soluble molecule that could be secreted from cells. Secreted RAET1G2 was shown to downregulate NKG2D receptor expression on NK cells and hence may represent a novel tumour immune evasion strategy.
Conclusions/Significance:
We demonstrate that the expression patterns of ULBP5RAET1G are very similar to the well-characterised NKG2D ligand, MICA. However the two isoforms of ULBP5/RAET1G have very different cellular localisations that are likely to reflect unique functionality
Discovery of a Novel Class of Orally Active Trypanocidal N-Myristoyltransferase Inhibitors
N-Myristoyltransferase (NMT) represents a promising drug target for human African trypanosomiasis (HAT), which is caused by the parasitic protozoa Trypanosoma brucei. We report the optimization of a high throughput screening hit (1) to give a lead molecule DDD85646 (63), which has potent activity against the enzyme (IC50 = 2 nM) and T. brucei (EC50 = 2 nM) in culture. The compound has good oral pharmacokinetics and cures rodent models of peripheral HAT infection. This compound provides an excellent tool for validation of T. brucei NMT as a drug target for HAT as well as a valuable lead for further optimization.</p
Essential Biodiversity Variables
There is an urgent need to develop a global system for biodiversity observations, with harmonized and regular measurements of a set of Essential Biodiversity Variables covering the different dimensions of biodiversity change, to provide scientists, managers and policy-makers with accurate and timely information.JRC.H.1 - Water Resource
Adsorbate-induced curvature and stiffening of graphene
The adsorption of the alkane tetratetracontane (TTC, C44H90) on graphene induces the formation of a curved surface stabilized by a gain in adsorption energy. This effect arises from a curvature-dependent variation of a moiré pattern due to the mismatch of the carbon−carbon separation in the adsorbed molecule and the period of graphene. The effect is observed when graphene is transferred onto a deformable substrate, which in our case is the interface between water layers adsorbed on mica and an organic solvent, but is not observed on more rigid substrates such as boron nitride. Our results show that molecular adsorption can be influenced by substrate curvature, provide an example of two-dimensional molecular self-assembly on a soft, responsive interface, and demonstrate that the mechanical properties of graphene may be modified by molecular adsorption, which is of relevance to nanomechanical systems, electronics, and membrane technology
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
- …
