96 research outputs found

    On the Bennelongia barangaroo lineage (Crustacea, Ostracoda) in Western Australia, with the description of seven new species

    Get PDF
    The ostracod genus Bennelongia De Deckker & McKenzie, 1981 is endemic to Australia and New Zealand. Extensive sampling in Western Australia (WA) revealed a high specific and largely undescribed diversity. Here, we describe seven new species belonging to the B. barangaroo lineage: B. timmsi sp. nov., B. gnamma sp. nov., B. hirsuta sp. nov., B. ivanae sp. nov., B. mcraeae sp. nov., B. scanloni sp. nov. and B. calei sp. nov., and confirm the presence of an additional species, B. dedeckkeri, in WA. For five of these eight species, we could construct molecular phylogenies and parsimonious networks based on COI sequences. We also tested for cryptic diversity and specific status of clusters with a statistical method based on the evolutionary genetic species concept, namely Birky’s 4 theta rule. The analyses support the existence of these five species and a further three cryptic species in the WA B. barangaroo lineage. The molecular evidence was particularly relevant because most species described herein have very similar morphologies and can be distinguished from each other only by the shape, size and position of the antero-ventral lapel on the right valve, and, in sexual populations, by the small differences in shape of the hemipenes and the prehensile palps in males. Four species of the WA B. barangaroo lineage occur in small temporary rock pools (gnammas) on rocky outcrops. The other four species are mainly found in soft bottomed seasonal water bodies. One of the latter species, B. scanloni sp. nov., occurs in both claypans and deeper rock pools (pit gnammas). All species, except for B. dedeckkeri, originally described from Queensland, have quite clearly delimited distributions in WA. With the seven new species described here, the genus Bennelongia now comprises 25 nominal species but several more await formal description

    Nine new species of Bennelongia De Deckker & McKenzie, 1981 (Crustacea, Ostracoda) from Western Australia, with the description of a new subfamily

    Get PDF
    The genus Bennelongia De Deckker & McKenzie, 1981 is most likely endemic to Australia and New Zealand and, up to now, only two described species in this genus had been reported from Western Australia. Extensive sampling in Western Australia revealed a much higher specifi c diversity. Here, we describe nine new species in three lineages, within the genus Bennelongia: B. cygnus sp. nov. and B. frumenta sp. nov. in the B. cygnus lineage, B. gwelupensis sp. nov., B. coondinerensis sp. nov., B. cuensis sp. nov., B. lata sp. nov. and B. bidgelangensis sp. nov. in the B. australis lineage, and B. strellyensis sp. nov. and B. kimberleyensis sp. nov. (from the Pilbara and Kimberley regions respectively) in the B. pinpi-lineage. For six of the nine species, we were also able to construct molecular phylogenies and to test for cryptic diversity with two different methods based on the evolutionary genetic species concept, namely Birky’s 4 x rule and the GYMC model. These analyses support the specifi c nature of at least four of the fi ve new species in the B. australis lineage and of the two new species in the B. pinpi lineage. We also describe Bennelongiinae n.subfam. to accommodate the genus. With the nine new species described here, the genus Bennelongia now comprises 15 species, but several more await formal description

    Four new genera and five new species of 'Heterocypris' from Western Australia (Crustacea, Ostracoda, Cyprinotinae)

    Get PDF
    Five new species in four new genera from Western Australia are described. All species have valve characters that are reminiscent of the genus Heterocypris Claus, 1892 and also have similar valve outlines, with highly arched valves. However, all species have a hemipenis morphology that is totally different from the typical form in Heterocypris. In Patcypris gen. nov. (with type species P outback gen. et sp. nov.), the lateral lobe is large and shaped as a pickaxe, while the medial lobe is divided into two distal lobes. Trilocypris gen. nov. (with type species T. horwitzi gen. et sp. nov.) is characterised by a hemipenis that has three, instead of two, distal lobes. In Bilocypris gen. nov. (with type species B. fortescuensis gen. et sp. nov. and a second species, B. mandoraensis gen. et sp. nov.), the lateral lobe of the hemipenis is spatulate, rather than boot-shaped, and the medial lobe is bilobed. Bilicypris gen. nov. (with type species B. davisae gen. et sp. nov.) has a large and sub-rectangular lateral lobe and a pointed medial lobe. We discuss the taxonomic value of the traditional and new morphological characters and speculate that the diversity of this cluster of genera and species may be greater than currently known

    A review of Bennelongia De Deckker & McKenzie, 1981 (Crustacea, Ostracoda) species from eastern Australia with the description of three new species

    Get PDF
    Australia is predicted to have a high number of currently undescribed ostracod taxa. The genus Bennelongia De Deckker & McKenzie, 1981 (Crustacea, Ostracoda) occurs in Australia and New Zealand, and has recently shown potential for high speciosity, after the description of nine new species from Western Australia. Here, we focus on Bennelongia from eastern Australia, with the objectives of exploring likely habitats for undiscovered species, genetically characterising published morphological species and scanning classical species for cryptic diversity. Two traditional (morphological) species are confi rmed to be valid using molecular evidence (B. harpago De Deckker & McKenzie, 1981 and B. pinpi De Deckker, 1981), while three new species are described using both morphological and molecular evidence. Two of the new species belong to the B. barangaroo lineage (B. dedeckkeri sp. nov. and B. mckenziei sp. nov.), while the third is a member of the B. nimala lineage (B. regina sp. nov.). Another species was found to be genetically distinct, but is not formally described here owing to a lack of distinguishing morphological features from the existing species B. cuensis Martens et al., 2012. Trends in diversity and radiation of the genus are discussed, as well as implications these results have for the conservation of temporary pool microfauna and our understanding of Bennelongia’s evolutionary origin

    Four new genera and five new species of 'Heterocypris' from Western Australia (Crustacea, Ostracoda, Cyprinotinae)

    Get PDF
    Five new species in four new genera from Western Australia are described. All species have valve characters that are reminiscent of the genus Heterocypris Claus, 1892 and also have similar valve outlines, with highly arched valves. However, all species have a hemipenis morphology that is totally different from the typical form in Heterocypris. In Patcypris gen. nov. (with type species P outback gen. et sp. nov.), the lateral lobe is large and shaped as a pickaxe, while the medial lobe is divided into two distal lobes. Trilocypris gen. nov. (with type species T. horwitzi gen. et sp. nov.) is characterised by a hemipenis that has three, instead of two, distal lobes. In Bilocypris gen. nov. (with type species B. fortescuensis gen. et sp. nov. and a second species, B. mandoraensis gen. et sp. nov.), the lateral lobe of the hemipenis is spatulate, rather than boot-shaped, and the medial lobe is bilobed. Bilicypris gen. nov. (with type species B. davisae gen. et sp. nov.) has a large and sub-rectangular lateral lobe and a pointed medial lobe. We discuss the taxonomic value of the traditional and new morphological characters and speculate that the diversity of this cluster of genera and species may be greater than currently known

    On the Bennelongia nimala and B. triangulata lineages (Crustacea, Ostracoda) in Western Australia, with the description of six new species

    Get PDF
    The ostracod genus Bennelongia De Deckker & McKenzie, 1981 occurs in Australia and New Zealand. We redescribe B. nimala from the Northern Territory and describe six new species from Western Australia belonging to the B. nimala (five species) and B. triangulata sp. nov. (one species) lineages: B. tirigie sp. nov., B. koendersae sp. nov., B. pinderi sp. nov., B. muggon sp. nov., B. shieli sp. nov. and B. triangulata sp. nov. For six of these seven species, we could construct molecular phylogenies and parsimonious networks based on COI sequences. We tested for specific status and for potential cryptic diversity of clades with Birky's 4 theta rule. The analyses support the existence of these six species and the absence of cryptic species in these lineages. Bennelongia triangulata sp. nov. is a common species in the turbid claypans of the Murchison/ Gascoyne region. Bennelongia nimala itself is thus far known only from the Northern Territory. Bennelongia tirigie sp. nov., B. pinderi sp. nov. and B. muggon sp. nov. occur in the Murchison/ Gascoyne region, whereas B. koendersae sp. nov. and B. shieli sp. nov. are described from the Pilbara. With the six new species described here, the genus Bennelongia now comprises 31 nominal species

    Distribution and Environmental Tolerances of Aquatic Macroinvertebrate Families in the Agricultural Zone of Southwestern Australia

    Get PDF
    The agricultural zone of southwestern Australia is an extensively modified landscape. Ninety percent of the perennial native vegetation has been cleared and replaced by annual cereal crops and pasture. Consequently, groundwater has risen and much of the region is affected by dryland salinity. River geomorphology and water quality have been severely impacted by land clearing, anthropogenic patterns of land use, and secondary salinization. The objectives of this study were to determine patterns of distribution of aquatic macroinvertebrates in the region, and to identify environmental variables influencing these patterns. Aquatic macroinvertebrates were sampled at 176 river sites during spring 1997 and a range of environmental data were collected at each site. Eighty-one families were collected, with the fauna being dominated by insects. At the family level, macroinvertebrate communities were homogeneous and depauperate, and consisted of families that tolerated a broad range of environmental conditions. The fauna was particularly resilient to high salinities, with some families tolerating salinities orders of magnitude greater than previously reported for lotic waters. The most significant environmental factors influencing the distribution of aquatic invertebrates were rainfall, salinity, land use, and instream habitat

    Spineless Indicators

    Get PDF
    The Western Australian Department of Conservation and Land Management joined forces with researchers in three of Perth's universities in a project to assess the ecological health of the state's rivers and streams. They used macroinvertebrates as indicators of river health

    Invertebrate traits, diversity and the vulnerability of groundwater ecosystems

    Get PDF
    Funding Information: This manuscript evolved from a workshop titled Trait‐based analyses in groundwater ecology and bioassessment held as part of the 24th International Conference on Subterranean Biology, 20–24th August 2018, University of Aveiro, Portugal. The workshop was supported by the conference organisers and the Macquarie University Species Spectrum Research Centre. Financial support was also provided to M.A.D. by the Portuguese government (Fundação para a Ciência e Tecnologia; FCT) through the research unit UIDB/04085/2020 (CENSE). A.S.P.S.R. was supported by the VILLUM FONDEN (research grant 15471) and by Portuguese National Funds through Fundação para a Ciência e a Tecnologia within the cE3c Unit funding UIDB/00329/2020. S.I.S. acknowledges funding through EU Operational Programme Research, Development and Education No. CZ.02.2.69/0.0/0.0/16_027/0008357, and by the Ministry of Education, Youth and Sports of the Czech Republic [grant number CZ.02.1.01/0.0/0.0/16 025/0007417]. K.L.K. was supported in part by Australian Research Council grant LP190100927. The comments of the Editor, Associate Editor and an anonymous reviewer greatly improved the MS. Open access publishing facilitated by Macquarie University, as part of the Wiley ‐ Macquarie University agreement via the Council of Australian University Librarians. Publisher Copyright: © 2022 The Authors. Functional Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.Groundwater comprises the largest freshwater ecosystem on the planet. It has a distinct regime of extreme, yet stable environmental conditions that have favoured the development of similar morphological and functional traits in the resident invertebrate fauna (stygofauna). The analysis of community traits is increasingly used as an alternative to taxonomy-based assessments of biodiversity, especially for monitoring ecosystem status and linking the functions of organisms to ecological processes, yet it has been rarely applied to stygofauna and groundwater ecosystems. In this paper, we review the variation in functional traits among the invertebrate fauna of this important ecosystem. We focus on the stygofauna and processes of alluvium and fractured rock aquifers that are typified by small voids and fissures that constrain the habitats and environmental conditions. As a first step, we compare trait variability between groundwater and surface water invertebrate communities and then examine the significance of the ranges of these traits to the vulnerability of the ecosystem to change. Fifteen potentially useful functional traits are recognised. Eight of these have narrower ranges (i.e. exhibit fewer states, or attributes, of a particular trait) in groundwater than they do in surface water. Two traits have wider ranges. Our synthesis suggests that the relative stability of groundwater environments has led to low trait variability. The low biomass and low reproductive rate of stygofauna suggest that recovery potential following disturbance is likely to be low. For the purposes of both improved understanding and effective management, further work is needed to document additional functional traits and their states in groundwater fauna, enabling a better understanding of the relationship between response and effect traits in these ecosystems. Read the free Plain Language Summary for this article on the Journal blog.publishersversionpublishe
    corecore