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Abstract
1.	 Groundwater comprises the largest freshwater ecosystem on the planet. It has 

a distinct regime of extreme, yet stable environmental conditions that have fa-
voured the development of similar morphological and functional traits in the 
resident invertebrate fauna (stygofauna).

2.	 The analysis of community traits is increasingly used as an alternative to 
taxonomy-based assessments of biodiversity, especially for monitoring ecosys-
tem status and linking the functions of organisms to ecological processes, yet it 
has been rarely applied to stygofauna and groundwater ecosystems.

3.	 In this paper, we review the variation in functional traits among the invertebrate 
fauna of this important ecosystem. We focus on the stygofauna and processes 
of alluvium and fractured rock aquifers that are typified by small voids and fis-
sures that constrain the habitats and environmental conditions.

4.	 As a first step, we compare trait variability between groundwater and surface 
water invertebrate communities and then examine the significance of the ranges 
of these traits to the vulnerability of the ecosystem to change.

5.	 Fifteen potentially useful functional traits are recognised. Eight of these have 
narrower ranges (i.e. exhibit fewer states, or attributes, of a particular trait) in 
groundwater than they do in surface water. Two traits have wider ranges.

6.	 Our synthesis suggests that the relative stability of groundwater environments 
has led to low trait variability. The low biomass and low reproductive rate of 
stygofauna suggest that recovery potential following disturbance is likely to be 
low.

www.wileyonlinelibrary.com/journal/fec
mailto:﻿
https://orcid.org/0000-0003-2106-5543
https://orcid.org/0000-0002-5809-3372
https://orcid.org/0000-0001-9203-5400
https://orcid.org/0000-0002-3131-7049
https://orcid.org/0000-0002-6448-2710
https://orcid.org/0000-0003-0749-4878
https://orcid.org/0000-0002-4756-7034
https://orcid.org/0000-0001-8398-3556
https://orcid.org/0000-0003-0051-6480
https://orcid.org/0000-0003-4376-787X
http://creativecommons.org/licenses/by/4.0/
mailto:grant.hose@mq.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1365-2435.14125&domain=pdf&date_stamp=2022-07-30


    |  2201Functional EcologyHOSE et al.

1  |  INTRODUC TION

Groundwaters make up the most extensive freshwater ecosystem 
on the planet. They contain a suite of unique taxa, and a distinct 
regime of environmental conditions typified by extreme (e.g. total 
darkness, low energy) but relatively stable (e.g. low water flow, small 
thermal range) environmental conditions (Gibert et al., 1994). Given 
their low energy, groundwater environments typically support low 
biomass and diversity of taxa. However, isolation and fragmentation 
have given rise to a high degree of short-range endemism (Harvey 
et al., 2002), with typically few species in any one location, but many 
species across locations (Dumnicka et al., 2020). The pressures of 
the groundwater environment have led to a range of convergent and 
divergent evolutionary processes within and among groundwater in-
vertebrate species. The pressure for food and resources has resulted 
in the diversification of niches in some fauna (e.g. Ercoli et al., 2019; 
Fišer et al., 2019), while the darkness, low energy and stable con-
ditions have also led to convergent evolution, where species from 
divergent phylogenetic groups having similar morphological, physi-
ological and behavioural traits, creating low inter-species variability 
across many biological attributes, most notably, the loss of pigmen-
tation and vision.

In their seminal paper, McGill et al. (2006) stated that for traits to 
be useful in community ecology, they must vary more between taxa 
than within taxa. Yet, perhaps more importantly, there is a growing 
body of evidence showing that variability in inter- and intraspecific 
traits leads to greater stability of the ecosystem (Díaz et al., 2013; 
Wright et al.,  2016) and, conversely, low trait variability leads to 
low productivity, ecosystem functioning and stability (Hodapp 
et al., 2016). While low variability in traits is not a problem in its own 
right, particularly in long-term stable environments such as ground-
waters (and indeed maybe a response to that stability), reduced trait 
variability may increase vulnerability and decrease the resilience of 
the community to changes beyond the norm, such as those due to 
anthropogenic disturbance. This is particularly pertinent in the case 
of groundwater ecosystems, where over-pumping and reductions in 
recharge are diminishing these systems at a global scale (De Graaf 
et al., 2019; Jasechko & Perrone, 2021).

Trait-based analyses are increasingly used in ecology to pro-
vide an alternative to taxonomy-based assessments of biodiver-
sity and for linking the functions of organisms to processes at the 

ecosystem level (Hevia et al., 2017; Loreau & de Mazancourt, 2013; 
Menezes et al., 2010). In such approaches, biological attributes of 
taxa are quantified to describe and compare species and community 
responses to natural and human-impacted conditions. Trait-based 
approaches have the advantage of being able to indicate the mecha-
nisms of biotic responses to environmental change, allow consistent 
descriptors or metrics across broad spatial scales that transcend 
taxonomic descriptions and distributions, and have less seasonal 
and interannual variability compared with traditional taxonomy-
based community metrics (van den Brink et al., 2011). With ground-
water resources and ecosystems under immense pressure globally 
(Mammola, Cardoso, et al.,  2019; Mammola, Piano, et al.,  2019), 
traits may provide a sensitive and informative means to better un-
derstand these systems and assess ecological risk and change (Culp 
et al., 2011; Di Lorenzo, Murolo, et al., 2019).

7.	 For the purposes of both improved understanding and effective management, 
further work is needed to document additional functional traits and their states 
in groundwater fauna, enabling a better understanding of the relationship be-
tween response and effect traits in these ecosystems.

K E Y W O R D S
effect traits, functional traits, groundwater ecology, modality, morphological traits, response 
traits, stygobite, stygofauna, subterranean fauna

Glossary

Effect trait: An attribute of an organism that relates to its 
capacity to affect ecosystem properties or deliver ecosys-
tem functions.
Epigean: Surface dwelling.
Hyporheic zone: The sediment and porous space beneath 
and alongside a stream bed that forms an ecotone between 
the stream and adjoining groundwater habitats.
Response trait: An attribute of an organism that relates 
to its capacity to colonise or thrive in an environment and 
persist in the face of disturbance or environmental change.
State: An attribute of a trait depicting its category, level or 
kind. Elsewhere also referred to as ‘modality’.
Stygobite: Obligate groundwater inhabiting species.
Stygofauna: General term for groundwater-dwelling 
organisms.
Stygophile: Essentially surface-dwelling (epigean) species 
with incipient adaptation to the groundwater life and able 
to maintain permanent subterranean populations.
Stygoxene: Species only occurring sporadically in ground-
water habitats and unable to establish permanent subter-
ranean populations.
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The use of traits to characterise biological assemblages has 
transformed how ecologists view and compare freshwater sys-
tems (e.g. Poff, 1997; Townsend & Hildrew, 1994), providing a lens 
through which to predict the functioning and stability of ecosys-
tems (e.g. De Castro-Català et al.,  2020; Wright et al.,  2016), and 
assess ecological change. This is particularly true where changes 
become evident in the functional rather than taxonomic struc-
ture (Gagic et al., 2015; Loreau, 2010; Martini et al., 2021; Meyer 
& Kröncke,  2019; Winemiller et al.,  2015). Such approaches have 
been applied to micro-organisms (Šimek et al., 2017), algae (Hoadley 
et al.,  2021), land plants (Kattge et al.,  2011, 2020), invertebrates 
(Worischka et al.,  2015), fish (Mérigoux et al.,  2001) and amphib-
ians (Lourenço-de-Moraes et al.,  2020), and across the spectrum 
of freshwater ecosystems, including rivers (e.g. Erős et al.,  2009; 
Hoeinghaus et al.,  2007; Várbíró et al.,  2020), hyporheic zones 
(Descloux et al., 2014; Di Lorenzo, Fiasca, et al., 2021), lakes (Hébert 
et al., 2016) and wetlands (Van Bodegom et al., 2006). Except for a 
small number of recent papers, such as those by Di Lorenzo, Murolo, 
et al.  (2019), who compared functional traits of groundwater in-
vertebrate fauna (stygofauna) in response to nitrate contamina-
tion in a porous aquifer, and those by Borko et al. (2021) and Fišer 
et al. (2019), who analysed morphological traits to test niche differ-
entiation in subterranean amphipods, there has been little analysis 
of biological traits of groundwater organisms.

The aim of this paper is to explore whether a trait-based approach 
can be applied to groundwater ecosystems. We address this by first 
discussing how groundwater geomorphology, climate, water chem-
istry and biological interactions shape the functional trait diversity 
of groundwater invertebrate assemblages. We subsequently review 
the paradigm that groundwater ecosystems have a narrow range of 
trait states (i.e. attributes of a trait depicting its category, level or 
kind, also referred to as ‘modalities’; see Schmera et al.,  2015) by 
comparing groundwater invertebrate assemblages with those of ad-
joining hyporheic and surface freshwater systems. We then consider 
the significance of trait ranges of groundwater taxa for the vulner-
ability of the ecosystem to change. Our focus is on fractured and 
granular porous aquifers, where void spaces are typically small and 
constrain biota and groundwater flow, and on sections of those aqui-
fers where depth to groundwater is many metres below surface, so 
that the aquifer is not closely connected to surface processes (see 
below). We concentrate on stygofauna but recognise that microbes 
are critically important to the functioning of the ecosystem and may 
be equally amenable to a trait-based approach for groundwater sys-
tems (Madin et al., 2020).

2  |  ENVIRONMENTAL FAC TORS SHAPING 
TR AIT DIVERSIT Y IN GROUNDWATERS

Groundwater ecosystems exist in a continuum with adjoining ter-
restrial and aquatic ecosystems (Brunke & Gonser,  1997), shar-
ing the attributes of those systems, including water and biota, 
near those ecosystem boundaries (Datry et al.,  2005; Iannella 

et al., 2020). Remote from the boundaries, groundwater ecosys-
tems are typified by relatively stable environmental conditions.

As there is no light in groundwaters, there is an absence of photo-
synthetic organisms and a general reliance on surface infiltration as a 
source of carbon and oxygen (Schmidt & Hahn, 2012). Consequently, 
carbon and oxygen concentrations in groundwaters are naturally 
lower than in surface waters. For example, dissolved organic mat-
ter concentrations in pristine groundwaters are typically 0.2–2 mg/L 
(Thurman,  1985), with the median global dissolved organic car-
bon concentration in groundwater being 1.2  mg/L (McDonough 
et al., 2020) compared to 5.7 mg/L in lake waters (Sobek et al., 2007). 
Even when present in higher concentrations, much of the organic 
matter in groundwaters may be non-labile (Hofmann et al., 2020), 
leading to nutrient limitation. Dissolved oxygen concentrations 
in groundwater may vary from <0.3 to >3.0  mg/L (Malard & 
Hervant,  1999), and decrease with distance from exchange zones 
with surface aquatic and terrestrial systems.

Groundwater ecosystems are profoundly influenced by the ge-
ology and geological history of the aquifer, as well as climatic con-
ditions, water chemistry and biological interactions (Figure 1). The 
geological matrix of an aquifer provides a large thermal mass and 
buffers the ecosystem from daily and seasonal temperature cycles. 
As such, subsurface temperatures are typically close to the annual 
mean surface temperature, varying only 1–2°C over a year, with lit-
tle or no seasonality (Taylor & Stefan, 2009). Geological factors (e.g. 
lithology, stratigraphy) also determine the size of voids, water chem-
istry and the hydraulic characteristics of the aquifer and its ecosys-
tem. Such voids may be large in karst systems, allowing high flows 
and open water habitat, but in fractured rock and especially alluvial 
aquifers, void spaces are small (μm-mm range, Schmidt et al., 2017), 
which limits aquifer flows and creates a fine, tortuous habitat ma-
trix. The result is a diversity of hydrological and habitat conditions 
ranging from habitats similar to those in surface aquatic systems, 
albeit in total darkness (e.g. cave streams), to more restrictive envi-
ronments where pore size determines both biotic distribution and 
hydrodynamics. These environmental pressures have resulted in the 
evolution of a unique array of biota comprising microbes, inverte-
brate and, occasionally, vertebrate stygofauna (Humphreys, 2006).

Obligate groundwater species (stygobites) originated from 
surface-water ancestors, in both ancient and recent times. Some 
surface-water species entered groundwater due to their intrinsic 
capacity for dispersal (Rouch & Danielopol,  1987), whereas oth-
ers were trapped underground during past marine transgression–
regression events (Notenboom,  1991; Stock,  1980), or entered 
groundwater in response to climate variation at the surface (Barr Jr 
& Holsinger, 1985). Irrespective of their origins, these taxa possess 
a suite of traits, or plasticity in relevant traits, which have enabled 
them to persist underground (Danielopol & Rouch, 1991), with nu-
merous processes having shaped their morphological and physiolog-
ical adaptations (Figure 1).

Following colonisation of the subterranean realm, evolution, 
as driven by the groundwater environment, has created a highly 
adapted fauna, which were likely pre-adapted to cope with low food 
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availability and total darkness (Holsinger,  1993). Stygofauna from 
multiple taxonomic lineages have evolved convergent morpholog-
ical and physiological traits (Figure  1). The competitive advantage 
conferred by these traits means that undisturbed groundwaters are 
typically dominated by taxa with some or all of these traits (Korbel & 
Hose, 2011; Stein et al., 2010). While convergent morphologies and 
physiologies have been recognised across a range of stygofauna (e.g. 
Christiansen, 2012; Humphreys, 2006; Villani et al., 1999), the range 
of traits associated with those convergences relative to surface eco-
systems has not been previously quantified.

Importantly, the environmental conditions in aquifers (e.g. low 
dissolved oxygen and nutrients) are at, or close to, the physiological 
limits of some organisms. Away from exchange zones, groundwa-
ters are generally stable and buffered from the large fluctuations 
in water chemistry, temperature and flow that occur in surface 
waters, except, perhaps, during large recharge events (e.g. Datry 
et al., 2005; Reiss et al., 2019). As such, groundwater ecosystems are 
subject to strong, but typically stable, selective pressures that are 
common across aquifers of different geologies (Figure 1). Given this, 
it might be expected that these conditions reduce niche differentia-
tion and thus diversity, and select for species with similar trait values 
(Cornwell & Ackerly, 2009; Keddy, 1992; Maire et al., 2012 but see 
Francois et al., 2016).

2.1  |  Groundwater biodiversity and biomass

Groundwater ecosystems are typified by low diversity in any lo-
cation (α diversity), but high diversity across locations (β diversity) 
(Hahn & Fuchs, 2009; Malard et al., 2009; Stoch & Galassi, 2010). 
For example, Hancock and Boulton (2008) identified up to 10 taxa 
per well, but up to 35 taxa per aquifer in samples from four alluvial 
aquifers in eastern Australia. The authors also found that taxa were 
all limited to a single aquifer, with one-quarter of all taxa appearing 

to have highly localised distributions within the aquifer (Hancock & 
Boulton, 2008). By comparison, Göthe et al. (2014) reported a range 
of 18–55 macroinvertebrate taxa at sites within headwater streams, 
and 42–64 taxa within catchments, which reflects similar trends 
in rivers elsewhere (Clarke et al., 2008). Such patterns mean that: 
(a) there are fewer individuals and species to undertake ecosystem 
functions in groundwater, thus increasing the relative importance 
of species abundances to the overall ecosystem functioning; and (b) 
there is little functional redundancy (Gibert & Deharveng,  2002), 
despite there being fewer functional trait states for taxa to occupy 
(and thus greater likelihood of overlap). However, cryptic species 
that may co-occur in groundwaters could potentially contribute to 
functional redundancy.

While the traits of the taxa dictate the particular ecosystem 
services that are provided, the magnitude of services provided 
is dependent on the abundance/biomass of those taxa in the 
environment (Gaston et al., 2018). For groundwaters, biomass is 
typically low (e.g. Griebler & Lueders,  2009; Humphreys,  2006), 
and heterogeneous. Microbial densities in groundwaters are typi-
cally several orders of magnitude lower and cell size often smaller 
than in surface waters (Griebler & Lueders,  2009; van Driezum 
et al.,  2018; Whitman et al.,  1998). The invertebrate biomass of 
aquifers is even less than that of microbes; for example, Marxsen 
et al.  (2021) estimated between 0 and 3800 μg invertebrates/L 
(median ~ 300 μg/L) in groundwater, which was typically only 1% 
of the prokaryote biomass. Elsewhere, Di Lorenzo et al.  (2020) 
estimated that the total mass of carbon in stygofauna in a po-
rous aquifer was only 43 ng/km2, of which 27% was from non-
stygobitic species.

What do this low abundance and low trait variability mean for 
ecosystem vulnerability? Does the loss of a small biomass of organ-
isms that provide ecosystem services affect the state of the eco-
system? The relatively little information on metazoan biomass in 
groundwaters particularly limits the ability to predict ecosystem 

F I G U R E  1  Overview of the 
organisational levels of response and 
effect traits in groundwater invertebrates 
(stygofauna) that are important in 
groundwater and their main influences 
from, and on, the environment.

Ecosystem 
services

Func�onalunc�ona
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changes to disturbance (Suding et al., 2008) because the extent to 
which a species contributes to ecosystem services depends strongly 
on its local abundance (Díaz et al., 2013). Understanding the biomass 
and abundance of stygofauna and its distribution within an aquifer is 
thus critical to advancing knowledge of these ecosystems.

3  |  DO ST YGOFAUNA HAVE NARROW 
R ANGES OF TR AIT STATES IN 
COMPARISON TO SURFACE WATER FAUNA?

Multiple frameworks and typologies have been developed to clas-
sify and analyse biological traits. Suding et al.  (2008) proposed a 
framework distinguishing between response and effect traits, which 
can be used to describe how a community responds to change, and 
how a changed community affects ecosystem functioning (Mensens 
et al., 2017). Response traits are those that determine the capacity of 
an organism to colonise or thrive in an environment and persist in 
the face of disturbance or environmental change (Díaz et al., 2013; 
Suding et al., 2008), and relate directly to the resilience and resist-
ance of an ecosystem (Figure 1). Response traits include reproduc-
tion, growth rate and dispersal that potentially support recovery 
or mitigate the impacts of changes in populations. Effect traits de-
termine how an organism affects ecosystem properties or delivers 
ecosystem functions (such as bioturbation or nutrient cycling) (Díaz 
et al., 2013; Suding et al., 2008; Figure 1). By examining a selection 
of key response and effect traits, below we consider whether the 
ranges of trait states in groundwater invertebrates are truly nar-
rower than those of surface water invertebrates.

We acknowledge that in the discussion below we identify some 
response and effects traits that relate directly to an ecological 
function (e.g. number of eggs, metabolic rate) while some traits are 
surrogate measures; furthermore, that individual traits are not inde-
pendent, having often co-evolved in response to the same pressures. 
These problems are not restricted to groundwater ecosystems and 
invertebrates (e.g. Endler, 1995; Klug & Bonsall, 2019). However, the 
dearth of knowledge of the traits of groundwater invertebrates rela-
tive to other ecosystems highlights the pressing need to identify and 
quantify functions and traits, and to better understand the evolution 
of traits and the delivery of ecosystem functions.

3.1  |  Response traits in stygofauna

In response to darkness, many subterranean species lack func-
tional eyes and pigmentation, and have developed enhanced non-
ocular sensory appendages or chemo-sensory structures to assist 
in swimming, mating and finding food (Christiansen, 2012; Galassi 
et al., 2009). The absence of eyes avoids the metabolic costs of eye 
development and maintenance, and the vulnerability that sensitive 
optical structures create (Moran et al.,  2015). The vision states in 
subterranean fauna are limited (Friedrich,  2013), with blindness 
(anophthalmy) being the most common state (Table S1). Eye spots 

are retained in some copepods and amphipods (microphthalmy) 
and groundwater insects typically lack the compound eyes of their 
surface relatives. Thus, there are more states for groundwater in-
vertebrates compared to surface water invertebrates where well-
developed eyes (macrophthalmy) are the norm (Table S1). Although 
anophthalmy and microphthalmy are widely shared traits, ground-
water species differ in their response to light. For example, while 
most groundwater species are insensitive to light, others, such as 
some amphipods from the genus Niphargus, are photophobic. This 
feature helps Niphargus distinguish between surface and subterra-
nean environments, avoiding surface habitats where UV rays may be 
dangerous for depigmented animals (Manenti & Barzaghi, 2021), and 
competition and predation may be more extensive (Fišer et al., 2016). 
Hence, we propose the additional states ‘anophthalmy and photo-
sensitive’ and ‘anophthalmy and non-photosensitive’ (Table S1).

Most stygofauna are white (pigmentless), which avoids the un-
necessary metabolic cost of pigment production, although some 
taxa (e.g. diving beetles) have residual pigmentation from their sur-
face water origins (Langille et al.,  2021), but lack the diversity of 
colours seen in surface freshwater and marine invertebrates. Body 
coloration provides protection from ultraviolet radiation, thermal 
resistance and visual communication to conspecifics and predators 
(De Bruyn & Gosselin, 2014), and thus seemingly offers little advan-
tage in a dark world. Consequently, we expect decreased variation in 
this trait relative to surface water invertebrates. Trait classifications 
for colour are limited, and Spitz et al. (2014) propose a binary clas-
sification of ‘cryptic’ or ‘conspicuous’ for marine environments. This 
should be adapted for stygobites to include ‘unpigmented’, capturing 
the two states of this trait (cryptic and unpigmented) in groundwater 
fauna (Table S1).

The confines of the small void spaces have also constrained (or 
selected for) the shape of most larger groundwater organisms to 
be generally vermiform (worm-like), enabling them to negotiate the 
small voids within the aquifer matrix. Body shape is likely to vary 
more in caves than in small-void aquifer types, as multiple habitat 
types in caves should allow for more diverse morphologies (Trontelj 
et al., 2012), although there may be significant variation in intersti-
tial species across some taxa (see Fišer et al., 2019). Descloux et al. 
(2018) suggested four states for body shape in aquatic invertebrates 
(streamlined, flattened, cylindrical and spherical), all of which are 
known for surface water and groundwater fauna (Table S1); there 
may be no difference in the trait states between surface water, hy-
porheic and groundwater invertebrates because all environments 
typically have some limited void spaces (Peralta-Maraver et al., 2018; 
Schmidt et al., 2017).

The physically confined aquifer environment limits access to open 
air and restricts respiratory options, thus we expect fewer states to 
be present in groundwater compared to surface water invertebrates. 
States relating to respiration in groundwater fauna are limited to gills 
and tegument (cutaneous) respiration. Spiracles are generally absent 
(Table S1), with plastrons being only present in a few stygobitic elmid 
beetle species (Hernando et al., 2001). Adult groundwater dytiscids 
(diving beetles) are unable to carry and replenish a sub-elytral air 
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store and lack the setal tracheal gills found in some small surface 
dytiscids (Kehl & Dettner, 2009). Consequently, they rely on less ef-
ficient cutaneous respiration and have a lower metabolic rate and 
are of small size due to the limited capacity for O2 uptake (Jones 
et al., 2019). Organisms using gill and tegument forms of respiration 
are also more sensitive to chemical stressors than air breathers (Van 
den Berg et al., 2019).

The mobility and dispersal of groundwater invertebrates are 
typically less than that of surface taxa (Galassi et al., 2009), hence 
we expect fewer states in groundwater than in surface water taxa 
(Table S1). Groundwater species tend to disperse slowly between 
aquifers and even within heterogeneous areas of the same aqui-
fer (Galassi et al.,  2017; Holsinger,  2005; Verovnik et al.,  2004). 
A noteworthy exception is the blind shrimp, Parisia unguis, 
which has a range of at least 300 km throughout a karst aquifer 
in the Northern Territory, Australia (Oberprieler et al.,  2021). 
However, the mobility of stygofauna is overall poorly known 
(Vadher et al., 2017). Smith et al. (2016) suggested that stygobitic 
Amphipoda could migrate between 17 and 35 km/year, while Di 
Lorenzo, Di Cicco, et al.  (2019) measured the swimming speed 
and relative inactivity of the groundwater copepod Diacyclops 
belgicus (1.5 mm/s and 50% respectively), which translates to po-
tential migration up to 24 km/year. Although such long-distance 
movements are theoretically possible, they are likely to be lim-
ited by barriers, food availability (long-term energetics) and the 
heterogeneous aquifer matrix. Three states of crawling rates (very 
low, low and high) for surface water fauna have been proposed 
by Brown and Milner  (2012) (Table  S1). Of these, high crawling 
rates (>100 cm/hr) have been observed in groundwaters (Smith 
et al., 2016; Stumpp & Hose, 2017). Low (10–100 cm/hr) and very 
low (<10 cm/hr) crawling rates may also be possible but are proba-
bly uncommon because attached or very slow-moving fauna (such 
as Cnidaria) that may move at these rates are rare in groundwaters.

The number of states for mobility in stygobites is slightly reduced 
relative to surface water systems. Usseglio-Polatera et al.  (2000) 
identified eight states among benthic fauna (Table  S1). Of these, 
five (excluding flyer and permanent attached) might readily describe 
stygobitic invertebrates (Table S1). Although surface swimmers and 
epibenthic burrowers may be unlikely in porous aquifer habitats, 
they may be present in cave waters (Pipan & Culver, 2007).

Unlike surface water taxa, and stygoxene and stygophile forms, 
in which flight of adult insect stages is possible, stygobites typically 
lack both active and passive aerial dispersal stages (Holsinger, 1993; 
Humphreys, 2006) and are constrained to aquatic dispersal states 
(Table S1). Within the dispersal states, active dispersal seems more 
likely in most porous aquifers given the typically low flow rates, al-
though passive dispersal is possible in large voids where there are 
higher water flow velocities, enabling stygobites to drift, such as 
from karstic aquifers into springs (e.g. Di Lorenzo et al., 2018; Gibson 
et al., 2008; Hutchins et al., 2021). Overall, there are fewer states 
of dispersal among groundwater than surface water invertebrates.

Resource limitations, particularly low carbon, nutrient and ox-
ygen concentrations in groundwaters, and the relative stability of 

those and other environmental conditions create a ‘predictably un-
favourable’ habitat (Greenslade, 1983). This set of conditions selects 
for the conservation of adaptations (‘A-selection’) among species, 
rather than K- or r-selection (Greenslade, 1983). A-selection is cor-
related with strategies such parthenogenesis, poor migratory ability, 
long life histories, and low reproductive rates (Greenslade,  1983), 
even more so than with K-selected taxa. These traits contrast with 
those of r-selected species. It is likely that both A- and K-selected 
taxa are present in groundwater ecosystems.

The timing of, and cues for, reproduction among groundwater 
invertebrates remain poorly known but are likely linked to resource 
availability rather than seasonality (see Edler & Dodds, 1996; Reiss 
et al., 2019; Saccò et al., 2020). Accordingly, the trait states linked 
to reproductive timing and cycles proposed for surface taxa (see 
Dunscombe et al.,  2018; Usseglio-Polatera et al.,  2000) are not 
relevant for groundwater. Some reproductive techniques, such as 
terrestrial oviposition are not possible for stygobites, meaning the 
range of traits is less than for surface species (Table S1), although the 
reproductive strategies of groundwater invertebrates remain poorly 
known.

The brood sizes of stygofauna are often small and occupy fewer 
states (brood size categories) than related surface species (Table S1), 
probably to invest limited energy in fewer offspring than many. 
Predation pressure is low in groundwater, so it is not necessary to 
invest in the high numbers of offspring characteristic of r-selected 
taxa (see above). For example, around 50 individual offspring per 
brood are produced by stygobitic representatives of the isopod 
genus Caecidotea in contrast with more than 300 eggs in epigean 
species of this genus (Zigler & Cooper, 2011). Similarly, the stygo-
bitic cyclopoid Eucyclops graeteri carries one to three eggs while the 
female of the epigean Eucyclops serrulatus carries two egg-sacs, each 
with 15–20 eggs (Dole-Olivier et al., 2000).

Metabolic rates of groundwater fauna are typically low as an evo-
lutionary adaptation to survive chronically low and/or discontinuous 
food and oxygen supplies (Mezek et al., 2010; Wilhelm et al., 2006), 
and lower than those of related surface taxa across a range of tem-
peratures (e.g. Di Lorenzo et al., 2015; Hervant et al., 1998; Issartel 
et al., 2005; but see Simčič & Sket, 2019). For example, during fast-
ing, electron transport system activity and the respiration rate of 
the stygobitic amphipod Niphargus stygius did not change while sig-
nificantly varying in the epigean relative Gammarus fossarum (Simčič 
et al.,  2005). Low metabolic rate is linked to low activity (Colson-
Proch et al., 2009; Gerhardt et al., 2020; Hervant et al., 1998, 2001) 
and reproduction (Carpenter, 2021), which are critical to ecosystem 
effects and responses. Groundwater invertebrates may also be 
better able to recover from hypoxia than surface species (Hervant 
et al., 1998). We propose three states of metabolic rates (lower than 
surface-water relatives, comparable to those of surface-water rel-
atives, and higher than those of surface water relatives) (Table S1).

Metabolic rates of organisms typically vary with body mass but, 
unusually, some groundwater species deviate from this general rule. 
Metabolic scaling is commonly described by the power function 
Y = aMb (e.g. Kleiber, 1932) in which Y = metabolic rate, M = body 
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mass and a and b are constants. In both endo- and ectothermic or-
ganisms, from unicellular microbes to multicellular plants and ani-
mals, metabolic rates scale linearly with the body mass with a factor 
b in the range between 0.66 and 0.75 (‘allometric scaling’, e.g. Brown 
et al., 2004; Gillooly et al., 2001, 2002). The metabolic rates of the 
adults of the stygobitic amphipod Gammarus acherondytes and the 
stygobitic copepod D. belgicus do not vary with body size in contrast 
to most surface water invertebrates (Di Lorenzo et al., 2015; Wilhelm 
et al., 2006). A constant low metabolism which does not scale with 
the body size (called ‘ametric’ scaling, Di Lorenzo et al., 2015) may be 
a physiological adaptation to food-limited environments. This pat-
tern may only apply to adult stygobites, since isometric scaling (i.e. 
where b is close to 1, indicating that oxygen consumption increases 
at the same rate as body mass) has been reported for the juveniles of 
D. belgicus (b = 1.01; Di Lorenzo et al., 2015). Isometric scaling during 
development is a response to rapid growth rates necessary to avoid 
predation and reduce juvenile mortality (e.g. Glazier, 2006). Shifts in 
the scaling of standard metabolic rates from near isometry in juve-
niles to allometry in adults have been observed in many animals and 
plants (Glazier et al., 2015). We propose three states of metabolic 
scaling (allometric, isometric and ametric) (Table S1), and we assume 
‘ametric scaling’ to be limited to groundwater fauna.

The A- and K-life history strategies of long life span and low re-
productive rates that are typical of stygofauna (in contrast to r strat-
egies) have been associated with high ecotoxicological risk profiles 
(Daam et al., 2010; Posthuma & Van Straalen, 1993), and thus a high 
sensitivity to chemical disturbance. This may be exacerbated by 
the low mobility of stygofauna which makes them unable to avoid 
chemical stressors (e.g. Araújo et al.,  2020; Di Cicco et al.,  2021). 
The limited data on the chemical sensitivity of stygofauna (Castaño-
Sánchez et al.,  2020a) show that groundwater species are sensi-
tive to chemicals, although it is not possible to state whether they 
are consistently more or less sensitive to chemicals than related 
taxa from other environments (Di Lorenzo, Di Marzio, et al., 2019; 
Hose,  2005). Von der Ohe and Liess  (2004) provided an index of 
chemical sensitivity (S) for aquatic fauna by comparison to Daphnia 
magna. Such a dichotomous approach, that is, more (S > 1) or less 
(S < 1) sensitive than Daphnia magna may be applicable to ground-
waters. Although the limited existing ecotoxicological data from sty-
gobitic species (Castaño-Sánchez et al., 2020a) suggest that they are 
generally less sensitive than D. magna for the same chemicals, both 
states of this trait are likely (Hose, 2005, 2007, Table S1).

3.2  |  Effect traits in stygofauna

The effect traits of stygofauna underpin key ecosystem services 
such as the maintenance of the physical environment through bio-
turbation (Hose & Stumpp,  2019) and trophic interactions (Saccò, 
Blyth, Humphreys, et al.,  2019; Weitowitz et al.,  2019) that serve 
to simultaneously promote microbial growth and control microbial 
clogging of the aquifer, and nutrient cycling (Griebler et al., 2019). 
Collectively, these services maintain or improve groundwater flow 

and quality. The traits relating to these processes include body size 
and feeding strategies, which may have fewer states among stygo-
fauna (Table S1). Groundwater ecosystems also provide other ser-
vices, but many of these, such as bioremediation, are supplied by 
microbial taxa (Griebler et al., 2019; Griebler & Lueders, 2009).

The ability of fauna to bioturbate (Che & Dorgan, 2010), and their 
influence on the hydraulic properties of the aquifer, are directly re-
lated to their body size (Hose & Stumpp, 2019). However, not all sty-
gobitic invertebrates are capable of burrowing, with many utilising 
existing voids in the matrix. For these non-burrowing taxa, there is 
frequently a relationship between the body size and habitat pore size 
(Dumnicka et al., 2020; Korbel et al., 2019). The minute voids present 
in unconsolidated sediments of alluvial aquifers are a spatial con-
straint for even small stygobitic cyclopoids and harpacticoids, which 
often have reduced body size, shortening of the swimming legs and a 
reduction in setation of the cephalic appendages relative to surface 
water species (Bruno et al., 2009; Galassi, 2001). In addition to the 
physical constraints of the environment, it is likely that oxygen and 
carbon availability limits animal size as observed for epigean animals 
(Harrison et al., 2010). Body size is modulated by environmental fac-
tors and, along with temperature, oxygen and food play a critical 
role in the evolution of animal size (e.g. Allen et al., 2006; Harrison 
et al., 2010). In groundwater, the constantly low oxygen level and 
food availability likely contribute to the relatively smaller size range 
of invertebrates in groundwater communities (consistently <40 mm) 
compared to those in surface waters (Table S1).

Mediating microbial assemblages is a critical function of ground-
water fauna (Griebler et al., 2019; Weitowitz et al., 2019), which is 
achieved through grazing and sediment ingestion. Many taxa are 
sediment swallowers, able to strip bacteria before excreting the 
sediment, which, in turn, may stimulate microbial activity (Mattison 
et al., 2005; Saccò, Blyth, Bateman, et al., 2019). The relative scar-
city of carbon in groundwater ecosystems favours opportunists and 
omnivores able to utilise any available carbon source, rather than 
trophic specialists. Nevertheless, some taxa display a high degree 
of trophic specialisation (Premate et al., 2021) and associations with 
particular trophic pathways (e.g. Hermann et al., 2020). For example, 
the stygobitic isopods Proasellus valdensis and P. cavaticus exhibited 
a strong specialisation on sedimentary biofilm and most probably 
feed selectively on this food source (Francois et al., 2016), but this 
may not necessarily expand the range of traits among taxa within 
the ecosystem. Usseglio-Polatera et al.  (2000) listed eight feeding 
habits for aquatic invertebrates, of which stygobites likely include 
seven: deposit feeder, shredder, scraper, filter feeder, piercer, preda-
tor and parasite. However, limited knowledge of the trophic ecology 
of stygofauna means that some categories, such as ‘absorber’, are 
currently unknown (Table S1). Despite coarse organic matter in the 
form of tree root material being available in shallow aquifers (and 
influencing stygofauna assemblages; see Jasinska et al., 1996; Korbel 
& Hose, 2015), specialist shredders are not known in alluvial aqui-
fers, but may be present there and in caves where plant root ma-
terial and allochthonous coarse organic matter are more common. 
Hence, based on current knowledge, the range of trophic traits of 



    |  2207Functional EcologyHOSE et al.

groundwater invertebrates is likely narrower than that of surface 
water invertebrates.

Life spans of stygobites are longer than those of related surface 
taxa (Ginet & Decou, 1977; Strayer, 1994; Voituron et al., 2011). While 
evidence of longevity of stygofauna is piecemeal and anecdotal, 
there is some evidence to suggest that the life span of some stygo-
bitic Crustacea exceeds several years (Galassi, 2001; Glatzel, 1990; 
Rouch, 1968; Venarsky et al., 2012; Table S1) compared to <1 year 
for many surface-water taxa (Descloux et al.,  2014). Sarremejane, 
Cid, et al.  (2020) proposed four states for life span (<1 week, 
≥1 week–1 month, ≥1 month–1 year, ≥1 year). We expect stygofauna 
will fit only two of these states, adult life span ≥1 month–1 year and 
≥1 year. Fauna that may depend on episodic events to stimulate 
breeding (Reiss et al., 2019; Saccò, Blyth, Bateman, et al., 2019) must 
have the capacity to survive for several years. Di Lorenzo, Fiasca, 
et al. (2021) and Di Lorenzo, Cifoni, et al. (2021) showed that adults 
of the stygobitic harpacticoid Nitocrella achaiae survive for a year in 
the laboratory, meaning that the overall life span (including juvenile 
stages) is likely to be much longer than 1 year. We thus propose ad-
ditional states for groundwater fauna that reflect their multi-year 
life span (Table S1), but overall, there is likely to be a narrower range 
of life spans among groundwater than surface-water invertebrates.

4  |  NARROW TR AIT R ANGES—WHAT 
MIGHT THIS ME AN FOR GROUNDWATER 
ECOSYSTEM VULNER ABILIT Y?

The above synthesis demonstrates that across a range of traits, in-
cluding response and effect traits, the variability in states among 
groundwater invertebrates is different, and more frequently nar-
rower, than in surface water systems. While not exhaustive, of the 
15 traits listed in Table S1, 8 had fewer states for groundwater than 
surface water invertebrates (Figure 2). Specifically, 6 of the 12 re-
sponse traits and 2 of the 3 effect traits had fewer states in ground-
waters than are expected in surface waters. For vision and metabolic 
scaling, there were likely more trait states present in groundwater 
than surface water invertebrates (Figure  2). The consequences of 
the low trait and taxonomic diversity of groundwater invertebrates 
are discussed below.

Our discussion above suggests that groundwater invertebrates 
have narrow ranges for numerous response and effect traits, and bio-
diversity and biomass within any location are typically low, relative 
to other aquatic ecosystems. Low biomass and diversity alone can 
predispose an ecosystem to vulnerability and impact its capacity to 
recover (Mori et al., 2013). In groundwaters, where the evolutionary 
convergence of fauna translates to reduced variation in effect and 
response traits (i.e. correlated effect and response functions sensu 
Díaz et al., 2013), the ecosystem is particularly vulnerable to pertur-
bation, with little capacity to resist or recover (Wright et al., 2016).

Low variability in response traits and low functional redundancy 
across a community mean that there exist few mechanisms for 
groundwater invertebrate communities to maintain their structure 

and function following disturbance, and that the potential impact of 
that disturbance to the community will be large (Castaño-Sánchez 
et al.,  2020a; Di Lorenzo, Cifoni, et al.,  2021). If variability in ef-
fect traits is low across a community, taxa that are able to persist 
through the often-long-lasting disturbances in groundwater may 
have only a narrow range of mechanisms to provide ecosystem ser-
vices, and some services may no longer be provided as a result (Gitay 
et al.,  1996). Therefore, the general observation that narrow trait 
ranges lead to a high degree of functional redundancy and support 
ecosystem resistance and resilience (Mori et al., 2013), is unlikely to 
apply in groundwater. The low diversity and biomass of organisms 
in groundwater ecosystems mean that there are relatively few taxa 
(and individuals) sharing suites of traits and trait states, and func-
tional redundancy is low compared to more speciose systems. From 
a starting point of low abundance and biomass, even small changes, 
either positive or negative, may have relatively significant ecosystem 
effects. This emphasises the importance of understanding the links 
between effect and response traits, and their interactions with the 
abundance and distribution of taxa. Despite being critical for pre-
dicting ecosystem vulnerability, this is an area of research for which 
there is a dearth of empirical data for both groundwaters and aquatic 
ecosystems.

Meta-analyses on both terrestrial and aquatic ecosystems have 
reported that functional redundancy positively affects community 
stability and resilience to disturbance (Biggs et al., 2020). Although 
more research into the mechanism(s) underlying this relationship is 
needed, it is possible that the low variability in response traits of 
groundwater fauna relative to surface aquatic fauna implies a limited 
capacity to respond to change. However, having relatively few or 
a narrow range of states for a given trait is only problematic if the 
environmental change exceeds the community's range of tolerances. 
That is, a community in which all taxa have a high degree of tolerance 

F I G U R E  2  Number of trait states expected in groundwater 
invertebrates compared to the number of states for the same 
trait in total among groundwater, surface water and hyporheic 
invertebrates. * Vision and metabolic scaling have more trait states 
in groundwater than in surface waters. See Table S1 for details of 
states.
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to change (but thus has low variability in the tolerance trait), may 
maintain ecosystem function despite significant disturbance (e.g. 
Boersma et al., 2014; Sarremejane, England, et al., 2020). As a hy-
pothetical (and optimistic) example, limited data suggest stygofauna 
from alluvial and fractured rock aquifers can tolerate temperatures 
3–5°C above background before showing an increase in mortality 
(Brielmann et al.,  2011; Castaño-Sánchez et al.,  2020b). If all taxa 
share this trait range, the direct effects of ‘best case’ temperature 
increases (1–2°C) forecasted under climate change in these systems 
may be limited (Castaño-Sánchez et al.,  2020b; but see Avramov, 
Rock, et al.,  2013 and Di Lorenzo & Galassi,  2017 for sublethal 
changes). However, the response to temperature increases among 
groundwater crustaceans, in particular, may be variable (Mermillod-
Blondin et al., 2013), and they may evolve tolerance to thermal 
change over longer time-scales (see Delić et al.,  2022; McInerney 
et al.,  2014) potentially enabling them to survive temperature 
changes associated with climate change. Response traits to other 
stressors, such as sensitivity to xenobiotics, are more likely to be 
variable and, under the current knowledge of stygofauna physiology, 
are unpredictable (Avramov, Schmidt, & Griebler,  2013; Castaño-
Sánchez et al.,  2020a, 2020b; Di Lorenzo, Cifoni, et al.,  2021; 
Hose,  2005, 2007). Importantly, the slow rates of groundwater 
movement and replenishment, and difficulties remediating contam-
inated groundwaters, mean that contaminant exposure may persist 
for longer in groundwater than in surface environments, putting 
stygofauna at particular risk (Hose, 2005). Predicting the ecological 
effects of change requires further knowledge of the magnitude of 
change and the range of values of related traits in the community, 
and their inter-relationship.

If low variability in response traits confers vulnerability, the net 
ecosystem function may be maintained if tolerant taxa are able to 
increase their functional output or increase in abundance follow-
ing the disturbance (Hinz et al., 2021). However, the recruitment of 
stygofauna following disturbance is typically low and slow, due to 
inherently low reproductive rates and dispersal of fauna (Table S1), 
meaning that there is likely to be a relatively extended period 
where ecosystem function remains impaired (Galassi et al.,  2014; 
Mammola et al., 2022; Mammola, Piano, et al., 2019). While there 
has been some evidence of biomass increases in some taxa follow-
ing contamination of aquifers with readily degradable organic mat-
ter (e.g. Sinton, 1984), such changes are unlikely to be sufficient to 
compensate for the loss of biomass and function of other taxa, at 
least in the short term (given low reproduction and immigration 
rates). Furthermore, contamination with less degradable organic 
substances can eradicate stygobitic crustacean communities (e.g. 
Graening & Brown,  2003). Even if disturbance favours the intro-
duction of surface taxa to the aquifer, it is uncertain whether those 
taxa can provide the same types and level of services provided by 
groundwater organisms and whether the natural stygofauna com-
munities can be re-established. Further quantification of the roles of 
invertebrates to ecosystem services in both surface and groundwa-
ters is urgently needed, as well as thresholds of invertebrate biomass 
(or abundance) needed to sustain ecosystem services.

5  |  TR AITS IN GROUNDWATER 
MONITORING

Trait-based analyses are increasingly incorporated in environmental 
monitoring, where changes in the suites of traits held by the com-
munity, rather than changes in terms of the taxonomic structure, 
indicate environmental change (see Culp et al.,  2011). Trait-based 
approaches are among a suite of taxonomy-free metrics that may 
be incorporated into biomonitoring (see Makiola et al., 2020). Such 
approaches have enormous potential for use in groundwater ecosys-
tems where the taxonomy of invertebrates is often challenging, and 
cryptic and endemic species are common (e.g. Bradford et al., 2010; 
Harvey, 2002; Iannella et al., 2021; McInerney et al., 2014; Mokany 
et al.,  2019). Trait-based approaches are also less subject to spa-
tial and temporal nuances than taxonomy-based assessments (van 
den Brink et al., 2011) and may be more consistent in responses to 
stressor gradients (Pollard & Yuan, 2010). While there are attributes 
of traits incorporated into existing monitoring approaches (e.g. ra-
tios of juveniles/adults and crustaceans/non-crustaceans; e.g. Di 
Lorenzo et al., 2015; Fattorini et al., 2017; Galassi et al., 2014; Korbel 
et al., 2011, 2017; Malard et al., 1996; Plenet et al., 1996; Stein 
et al.,  2010) overall greater knowledge and quantification of the 
functional traits of stygofauna are needed before such approaches 
can become routine.

6  |  CONCLUDING REMARKS AND FUTURE 
PERSPEC TIVES

Traits have great potential as a tool for better understanding 
groundwater ecosystems because they provide a framework to cir-
cumvent the taxonomic challenges of a (generally) poorly explored 
and described fauna (Ficetola et al.,  2019) as well as providing a 
possible tool for risk assessment (Díaz et al.,  2013). The provision 
of ecosystem services, which for groundwaters includes reliable 
drinking water supplies, is critically linked to the traits of the fauna. 
More work is needed to identify appropriate traits and their states in 
groundwater fauna. As in other ecosystem types, there is currently 
little understanding of the relationship between response and effect 
traits in groundwater, and this should be an area for further research 
(Suding et al., 2008) so that the nature and extent of changes to the 
ecosystem, and the delivery of ecosystem services following distur-
bance, can be better predicted. We have speculated that interspe-
cific trait variability among groundwater invertebrates is low in most 
situations as a likely consequence of the intense selective pressures 
of the groundwater environment. Models of traits and ecosystem 
stability suggest that low trait variability makes groundwater eco-
systems particularly vulnerable to change, with limited capacity for 
recovery, emphasising the recent and urgent calls for the improved 
recognition, conservation and management of groundwater eco-
systems (Boulton, 2020; Fattorini et al., 2020; Iannella et al., 2021; 
Mammola, Cardoso, et al.,  2019; Sánchez-Fernández et al.,  2021; 
Wynne et al., 2021).
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