238 research outputs found

    Identifying Priority Areas for Conservation: A Global Assessment for Forest-Dependent Birds

    Get PDF
    Limited resources are available to address the world's growing environmental problems, requiring conservationists to identify priority sites for action. Using new distribution maps for all of the world's forest-dependent birds (60.6% of all bird species), we quantify the contribution of remaining forest to conserving global avian biodiversity. For each of the world's partly or wholly forested 5-km cells, we estimated an impact score of its contribution to the distribution of all the forest bird species estimated to occur within it, and so is proportional to the impact on the conservation status of the world's forest-dependent birds were the forest it contains lost. The distribution of scores was highly skewed, a very small proportion of cells having scores several orders of magnitude above the global mean. Ecoregions containing the highest values of this score included relatively species-poor islands such as Hawaii and Palau, the relatively species-rich islands of Indonesia and the Philippines, and the megadiverse Atlantic Forests and northern Andes of South America. Ecoregions with high impact scores and high deforestation rates (2000–2005) included montane forests in Cameroon and the Eastern Arc of Tanzania, although deforestation data were not available for all ecoregions. Ecoregions with high impact scores, high rates of recent deforestation and low coverage by the protected area network included Indonesia's Seram rain forests and the moist forests of Trinidad and Tobago. Key sites in these ecoregions represent some of the most urgent priorities for expansion of the global protected areas network to meet Convention on Biological Diversity targets to increase the proportion of land formally protected to 17% by 2020. Areas with high impact scores, rapid deforestation, low protection and high carbon storage values may represent significant opportunities for both biodiversity conservation and climate change mitigation, for example through Reducing Emissions from Deforestation and Forest Degradation (REDD+) initiatives

    Mapping functional traits: comparing abundance and presence-absence estimates at large spatial scales

    Get PDF
    Efforts to quantify the composition of biological communities increasingly focus on functional traits. The composition of communities in terms of traits can be summarized in several ways. Ecologists are beginning to map the geographic distribution of trait-based metrics from various sources of data, but the maps have not been tested against independent data. Using data for birds of the Western Hemisphere, we test for the first time the most commonly used method for mapping community trait composition – overlaying range maps, which assumes that the local abundance of a given species is unrelated to the traits in question – and three new methods that as well as the range maps include varying degrees of information about interspecific and geographic variation in abundance. For each method, and for four traits (body mass, generation length, migratory behaviour, diet) we calculated community-weighted mean of trait values, functional richness and functional divergence. The maps based on species ranges and limited abundance data were compared with independent data on community species composition from the American Christmas Bird Count (CBC) scheme coupled with data on traits. The correspondence with observed community composition at the CBC sites was mostly positive (62/73 correlations) but varied widely depending on the metric of community composition and method used (R2: 5.6×10−7 to 0.82, with a median of 0.12). Importantly, the commonly-used range-overlap method resulted in the best fit (21/22 correlations positive; R2: 0.004 to 0.8, with a median of 0.33). Given the paucity of data on the local abundance of species, overlaying range maps appears to be the best available method for estimating patterns of community composition, but the poor fit for some metrics suggests that local abundance data are urgently needed to allow more accurate estimates of the composition of communities

    Crop expansion and conservation priorities in tropical countries

    Get PDF
    Expansion of cropland in tropical countries is one of the principal causes of biodiversity loss, and threatens to undermine progress towards meeting the Aichi Biodiversity Targets. To understand this threat better, we analysed data on crop distribution and expansion in 128 tropical countries, assessed changes in area of the main crops and mapped overlaps between conservation priorities and cultivation potential. Rice was the single crop grown over the largest area, especially in tropical forest biomes. Cropland in tropical countries expanded by c. 48,000 km2 per year from 1999–2008. The countries which added the greatest area of new cropland were Nigeria, Indonesia, Ethiopia, Sudan and Brazil. Soybeans and maize are the crops which expanded most in absolute area. Other crops with large increases included rice, sorghum, oil palm, beans, sugar cane, cow peas, wheat and cassava. Areas of high cultivation potential—while bearing in mind that political and socio-economic conditions can be as influential as biophysical ones—may be vulnerable to conversion in the future. These include some priority areas for biodiversity conservation in tropical countries (e.g., Frontier Forests and High Biodiversity Wilderness Areas), which have previously been identified as having ‘low vulnerability’, in particular in central Africa and northern Australia. There are also many other smaller areas which are important for biodiversity and which have high cultivation potential (e.g., in the fringes of the Amazon basin, in the Paraguayan Chaco, and in the savanna woodlands of the Sahel and East Africa). We highlight the urgent need for more effective sustainability standards and policies addressing both production and consumption of tropical commodities, including robust land-use planning in agricultural frontiers, establishment of new protected areas or REDD+ projects in places agriculture has not yet reached, and reduction or elimination of incentives for land-demanding bioenergy feedstock

    Adapting global biodiversity indicators to the national scale: A Red List Index for Australian birds

    Get PDF
    The Red List Index (RLI), which uses information from the IUCN Red List to track trends in the projected overall extinction risk of sets of species, is among the indicators adopted by the world’s governments to assess performance under the Convention on Biological Diversity and the United Nations Millennium Development Goals. For greatest impact, such indicators need to be measured and used at a national scale as well as globally. We present the first application of the RLI based on assessments of extinction risk at the national scale using IUCN’s recommended methods, evaluating trends in the status of Australian birds for 1990–2010. We calculated RLIs based on the number of taxa in each Red List category and the number that changed categories between assessments in 1990, 2000 and 2010 as a result of genuine improvement or deterioration in status. A novel comparison between trends at the species and ultrataxon (subspecies or monotypic species) level showed that these were remarkably similar, suggesting that current global RLI trends at the species level may also be a useful surrogate for tracking losses in genetic diversity at this scale, for which no global measures currently exist. The RLI for Australia is declining faster than global rates when migratory shorebirds and seabirds are included, but not when changes resulting from threats in Australia alone are considered. The RLI of oceanic island taxa has declined faster than those on the continent or on continental islands. There were also differences in the performance of different jurisdictions within Australia

    Mapping the global potential exposure of soaring birds to terrestrial wind energy expansion

    Get PDF
    The wind energy sector is steadily growing, and the number of wind turbines is expected to expand across large areas of the globe in the near future. While the development of wind energy can contribute to mitigating climate change, it also poses challenges to wildlife, particularly birds, due to increased collision risk with wind turbines. Here we quantify and map potential conflicts between the potential for wind energy development and the distribution of terrestrial soaring birds. We explore the relationship between species traits (including body mass, migration ecology and extinction risk) and exposure to potential wind energy development, and identified areas of potential conflict between wind power production and soaring bird conservation. We considered the full range of each species, as well as separately analyzing the breeding, non-breeding and passage ranges for migratory species. We show that exposure to potential wind energy development is similar for soaring and non-soaring bird species. Within different parts of the range of soaring bird species, passage distributions have significantly higher potential for wind energy development than the full, breeding or non-breeding ranges. Moreover, exposure to potential wind energy development was higher within the ranges of heavier soaring bird species and those that are migratory. We show that areas of conflict between soaring bird conservation and potential wind energy development could be very large, particularly when the passage ranges of soaring bird species are considered. Such areas of potential conflict are largely unprotected. This highlights a risk for soaring birds from potential wind energy development wherever it is not carefully sited in order to minimise environmental impacts.Peer reviewe

    Flight range, fuel load and the impact of climate change on the journeys of migrant birds

    Get PDF
    Collection of biometric data was supported by the Natural Environment Research Council (NE/I028068/1) to JAT and the USUK Fulbright Commission and the Oxford Clarendon Fund to C.S. This research was funded by a Durham University Seedcorn grant to SGW. Production of the underlying SDMs was funded by a National Environment Research Council training grant (NE/J500215/1).Climate change is predicted to increase migration distances for many migratory species, but the physiological and temporal implications of longer migratory journeys have not been explored. Here, we combine information about species' flight range potential and migratory refuelling requirements to simulate the number of stopovers required and the duration of current migratory journeys for 77 bird species breeding in Europe. Using tracking data, we show that our estimates accord with recorded journey times and stopovers for most species. We then combine projections of altered migratory distances under climate change with models of avian flight to predict future migratory journeys. We find that 37% of migratory journeys undertaken by long-distance migrants will necessitate an additional stopover in future. These greater distances and the increased number of stops will substantially increase overall journey durations of many long-distance migratory species, a factor not currently considered in climate impact studies.Publisher PDFPeer reviewe

    Accelerating the monitoring of global biodiversity : Revisiting the sampled approach to generating Red List Indices

    Get PDF
    Abstract Given the current biodiversity crisis, pragmatic approaches to detect global conservation trends across a broad range of taxa are critical. A sampled approach to the Red List Index (RLI) was proposed, as many groups are highly speciose. However, a decade after its conception, the recommended 900 species sample has only been implemented in six groups and trend data are available for none, potentially because this sample is unfeasibly high. Using a broader set of all available data we show that when re-assessments are conducted every 10 years, 200 species (400 in some cases) should be sufficient to detect a RLI trend. Correctly detecting changes in slope still requires samples of 900 species (11,000 in some cases). Sampled assessments can accelerate biodiversity monitoring and complement current metrics, but the time-period between assessments and the approaches? purpose should be carefully considered, as there is a trade-off between sample size and the resulting indices.Peer reviewe

    A global map of terrestrial habitat types

    Get PDF
    Funder: NatureMap (https://naturemap.earth/) through Norway's International Climate and Forest Initiative (NICFI)Abstract: We provide a global, spatially explicit characterization of 47 terrestrial habitat types, as defined in the International Union for Conservation of Nature (IUCN) habitat classification scheme, which is widely used in ecological analyses, including for quantifying species’ Area of Habitat. We produced this novel habitat map for the year 2015 by creating a global decision tree that intersects the best currently available global data on land cover, climate and land use. We independently validated the map using occurrence data for 828 species of vertebrates (35152 point plus 8181 polygonal occurrences) and 6026 sampling sites. Across datasets and mapped classes we found on average a balanced accuracy of 0.77 (+¯0.14 SD) at Level 1 and 0.71 (+¯0.15 SD) at Level 2, while noting potential issues of using occurrence records for validation. The maps broaden our understanding of habitats globally, assist in constructing area of habitat refinements and are relevant for broad-scale ecological studies and future IUCN Red List assessments. Periodic updates are planned as better or more recent data becomes available
    corecore