

Determinants of bird conservation action implementation and associated population trends of threatened species

Luther, David A.; Brooks, Thomas M.; Butchart, Stuart H. M.; Hayward, Matthew; Kester, Marieke E.; Lamoreux, John; Upgren, Amy

Conservation Biology

DOI: 10.1111/cobi.12757

Published: 01/12/2016

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Luther, D. A., Brooks, T. M., Butchart, S. H. M., Hayward, M., Kester, M. E., Lamoreux, J., & Upgren, A. (2016). Determinants of bird conservation action implementation and associated population trends of threatened species. *Conservation Biology*, *30*(6), 1338-1346. https://doi.org/10.1111/cobi.12757

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1 Title

- 2 Determinants of bird conservation action implementation and associated
- 3 population trends of threatened species
- 4 Short Running Title avian conservation actions
- 5 Authors
- 6 David A. Luther George Mason University, dluther@gmu.edu
- 7 Thomas M. Brooks International Union for Conservation of Nature,
- 8 Thomas.brooks@iucn.org
- 9 Stuart H. M. Butchart BirdLife International, Stuart.Butchart@birdlife.org
- 10 Matt W. Hayward Bangor University, m.hayward@bangor.ac.uk
- 11 Marieke E. Kester George Mason University, mkester2@gmu.edu
- 12 John Lamoreux National Fish and Wildlife Foundation, John.Lamoreux@nfwf.org
- 13 Amy Upgren George Mason University, aupgren@yahoo.com

14 Statement of authorship

- 15 DL, TB, SB, MH, JL, AU designed the study. SB provided the data. MK performed
- 16 modeling work and analyzed output data. DL wrote the first draft of the manuscript
- 17 and all authors contributed substantially to revisions.
- 18 Keywords IUCN redlist, conservation actions, extinction risk, birds
- 19 Abstract 173 words; Main text 3,484 words; Reference 51; Figures 2; Tables 2
- 20 Corresponding author David A. Luther George Mason University, 4400 University
- 21 Dr., MS 3E1, Fairfax VA 22030 Phone: 703-993-5267 Email: <u>dluther@gmu.edu</u>

22

23 Abstract

1	Conservation actions, such as habitat protection, attempt to halt the loss of				
2	threatened species and help their populations to recover. Thus far, research has				
3	examined the efficiency and the effectiveness of actions individually, yet ,				
4	conservation actions generally occur simultaneously so the full suite of				
5	implemented conservation actions should be considered<u>assessed</u>. We used the				
6	conservation actions associated with the threatened birds of the world (IUCN Red				
7	List) to assess which biological factors (related to taxonomy and ecology) and				
8	anthropogenic factors (related to geo-economics and population trends) are				
9	associated with the implementation of different classes of conservation actions. We				
10	also assessed which conservation actions are associated with increasing population				
11	trends. Threat category, taxonomic order, and geo-economic variables were the				
12	strongest predictors of <u>implemented which</u> conservation actions were				
13	implemented. Species with invasive alien species control/eradication, ex-situ				
14	conservation, international legislation, reintroduction, or education and awareness-				
15	raising were more likely to have increasing populations. I'd add a sentence in listing				
16	the less effective actions. These results illustrate the importance of developing a				
17	predictive science of conservation actions and the relative efficiencies of each class				
18	of implemented conservation action for threatened and near-threatened birds				
19	around the world.				
20					

- 21
- 22

1

2 Introduction

3 Due to human activities, the rate of species extinction is higher now than at any 4 other time in the past 65 million years (Barnosky et al 2011, Pimm et al 2014). 5 Conservation efforts aim to slow-down, stop, and reverse threats to species and thus 6 the current loss of biodiversity. However, the extinction risk to species continues to 7 rise (CBD 2014₇). This does not mean conservation efforts have failed. Indeed, 8 conservation efforts have circumvented at least 20% of projected increases in 9 aggregate extinction risk to birds and mammals over the last four decades, as 10 measured by changes in the IUCN Red List of Threatened Species (hereafter, "Red 11 List") (Hoffmann et al 2010). For ungulates, increases in aggregate extinction risk 12 since 1996 would have been eight times greater in the absence of conservation 13 action (Hoffmann et al 2015). 14 Targeted actions to recover birds have been particularly successful. For 15 example, between 1994 and 2004, conservation efforts likely prevented at least 16 16 bird species from going extinct (Butchart et al 2006, Rodrigues 2006). The 17 implementation of conservation actions for threatened species is critical if we are to 18 support the recovery of currently threatened species, as agreed in Aichi Target 12 of 19 the 2010–2020 Strategic Plan for Biodiversity (https://www.cbd.int/sp/targets/) 20 and prevent more species from declining and going extinct. 21 Research on the suite of parameters that affect extinction risk for threatened 22 species, including biological and geo-economic factors and threats, has made great

23 progress toward predicting extinction risk (Bland et al 2014, Cardillo et al 2006,

1	2008, Davidson et al 2009, Davies et al 2006, Fisher and Owens 2004, Mace 2004,				
2	Owens and Bennett 2000, Purvis et al 2000). While these studies have been				
3	remarkably informative about the extinction risk and threats facing species, it is				
4	only through the implementation of conservation actions that we have a chance to				
5	improve the status of threatened species. Thus, just as there currently is a predictive				
6	science of extinction risk, there is a need for a predictive science of conservation				
7	actions, which would illuminate how, why, and where conservation actions are best				
8	implemented for threatened species and assess their efficiency.				
9	Such a predictive science of conservation actions has not been completely				
10	overlooked. Hayward (2011) used a subsample of 144 threatened mammals from				
11	the Red List that improved or declined in status between 2004 and 2008				
12	assessments to assess the link between threats, conservation actions, and				
13	population trends. Brooks et al (2009) focused on the suite of conservation actions				
14	implemented in tropical rainforests to examine their effectiveness. Chapman (2014)				
15	surveyed experts about conservation actions as to whether they thought the actions				
16	were successful. Finally and most comprehensively, Williams et al (2012) conducted				
17	a literature review that assessed the efficiencies of each of the IUCN conservation				
18	action categories for birds. Building off of these attempts to assess the efficiency and				
19	effectiveness of implemented conservation actions, we assess the biological and geo-				
20	economic parameters that influence conservation action implementation and are				
21	associated with increasing population trends, using data for birds from the Red List.				
22	Here, we assess which factors predict implementation of conservation				
23	actions, and examine which actions are associated with different directions of				

1 population trends for threatened and Near Threatened bird species (i.e. in the

- 2 categories of Critically Endangered, Endangered or Vulnerable).
- 3

4 Material and methods

5 We examined the conservation actions underway for species assessed by BirdLife 6 International as threatened (i.e., Critically Endangered, Endangered or Vulnerable) 7 or Near Threatened on the Red List (BirdLife International IUCN red List for birds 8 2014 http://www.birdlife.org on May 27 2014). We excluded those Critically 9 Endangered species tagged as Possibly Extinct (PE) because most such species 10 require targeted searches to rediscover any surviving individuals before the most 11 appropriate conservation actions can be determined. 12 Birds are an excellent study group to investigate such questions, because all 13 birds have been comprehensively assessed against the Red List Categories and 14 Criteria (IUCN 2012), revealing 1,373 species to be threatened and 959 to be Near Threatened; i.e., 22% of the world's 10,425 bird species are considered of elevated 15 16 conservation concern (BirdLife International 2014). Further, 145 species are 17 assessed as recently Extinct, Extinct in the Wild, or Critically Endangered (Possibly 18 Extinct) (1% of all bird species) and only 62 are Data Deficient (0.5% of all bird 19 species). Moreover, bird populations occur in most habitats and all countries 20 worldwide, they are easily identifiable, practical to monitor and research, and there 21 are large networks of people studying birds, compiling information about them and 22 implementing conservation actions for them (Brooks et al 2008).

Commented [MH1]: But I didn't think 'Near Threatened' was included in the categories you subsequently list? Is it worth adding this as a category in the brackets at the end of the sentence?

1 We used data on conservation actions underway as documented in the 2 Species Information Service, the database co-managed by IUCN and BirdLife 3 International, which underpins the Red List. The fields for conservation actions 4 underway largely represent a subset of the actions in the classification scheme 5 developed by Salafsky et al (2008), and relate to a subset of those actions for which 6 meaningful data can be compiled for the majority of species on the Red List (see 7 Table 1). Conservation actions included in the database represent those that are 8 ongoing or took place within the last decade. One conservation action we excluded 9 was the identification of 'important sites' for species. Because nearly all (>95%) of 10 threatened and Near Threatened bird species have Important Bird and Biodiversity 11 Areas (IBAs) identified for them (BirdLife International 2014b), this parameter 12 would have little explanatory power in our analysis. We examined both biological 13 and anthropogenic factors as independent predictor variables of conservation 14 action implementation (see Table 1). We also included monitoring which is not 15 technically a conservation action according to Salafsky et al (2008) but is instead a 16 research need, yet tends to be a critical component in terms of assessing population 17 trends as related to conservation actions. All biological data were extracted from the 18 Species Information Service in July 2012 19 (http://www.birdlife.org/datazone/species). 20 For the habitat type used by each species, we considered only the broad

21 'level 1' classes (http://www.iucnredlist.org/technical-documents/classification22 schemes/habitats-classification-scheme-ver3) coded as being of major importance
23 during the breeding season. To simplify the analyses, we summed the four marine

1	habitat subcategories, neritic, intertidal, marine coastal and oceanic, to create a
2	more general "marine" category (which included 107 species), and pooled the
3	categories for caves and rocky areas, introduced vegetation and artificial
4	terrestrial/aquatic habitats, other habitats, and unknown habitats into a class we
5	termed "other" (which included 142 species). Species that inhabit multiple
6	geographic realms were scored in a "multiple" category, we scored species in
7	multiple landmass types in a "multiple" category as well.

8 Geo-economic factors, which describe the economic development of the 9 places where species live, can be an important determinant of conservation 10 implementation. To calculate the per capita area-weighted Gross Domestic Product 11 (GDP) for a species, we averaged the GDP for all countries in which each species 12 occurs relative to the portion of its range within each country (Rodrigues et al 13 2014). The GDP is calculated as per capita in 1990 international Geary-Khamis 14 dollars. GDP data are from the World Economic Outlook by the International 15 Monitary Fund (2014 dataset): http://www.imf.org/external/data.htm. One 16 hundred and eighty-eight countries belong to the IMF. For the few that do not 17 belong to it, we used estimates of GDP from the CIA Factbook (accessed 21 Feb 18 2015; see SOM for a list of countries):

19 https://www.cia.gov/library/publications/the-world-factbook/fields/2004.html.

Binomial regression models were fit to explain the presence of conservation
actions for 2,177 bird species. Missing data, among 4 variables with between 0.05%

and 5.9% missing (see SOM for details of missing data), were singly imputed (Figure
 1).

3 Best models were selected using a combination of the Akaike Information 4 Criterion (AIC) and an assessment of the generalized variance inflation factor to 5 ensure low collinearity among predictors. Collinearity among predictors was judged acceptable when the generalized variance inflation factor was below $\sqrt{3}$ (Zuur et al 6 7 2010). If the generalized inflation factor was > $\sqrt{3}$, that model was not considered 8 valid. After a final model was selected, Pearson residuals were binned and examined 9 to ensure no patterns emerged that would suggest an important predictor was left 10 out of the model. Residuals were plotted against all predictor variables, both those 11 included and excluded from the model, to ensure important predictors had not been 12 removed. Model averaging was conducted on the best models so that the cumulative 13 Akaike weight ≥ 0.95 (Johnson and Omland 2004) for each of the nine conservation 14 actions, resulting in one average final model for each conservation action. The best 15 models used for averaging are reported (Supplemental Online Material Table 1) 16 along with the averaged parameter estimate, unconditional standard error, and 17 confidence intervals (Supplemental Online Material Table 2). To determine the importance of variables we calculated the 90% (estimate ± 1.64 SE) and 95% 18 19 (estimate \pm 1.96SE) confidence intervals around the model averaged parameter 20 estimates (Kittle et al., 2008; Mazerolle 2004). If the confidence interval does not 21 contain 0 we can conclude that the parameter has an effect on the dependent variable (i.e. the estimate is different from 0). 22

1	Using linear regression, the relationship between predictor variables and the					
2	number of conservation actions was analyzed.					
3	Finally, a binomial regression model was fitted (using AIC and the					
4	generalized variance inflation factor as detailed above) to explore which					
5	conservation actions were associated with an increasing versus decreasing					
6	population trend for threatened and Near Threatened bird species. Population					
7	trends are based on ongoing trend data over the last several years. Coefficients for					
8	binomial regression were interpreted as the odds ratio using the antilog of the raw					
9	coefficients. Numerical results are reported as mean ± SEM. All tests were					
10	conducted using R statistical software, ver. 3.0.2, R Core Team 2014.					
11						
11	Results					
	Results Number and Class of Implemented Conservation Actions					
12						
12 13	Number and Class of Implemented Conservation Actions					
12 13 14	<i>Number and Class of Implemented Conservation Actions</i> In total, 5,424 conservation actions are documented as being implemented					
12 13 14 15	Number and Class of Implemented Conservation Actions In total, 5,424 conservation actions are documented as being implemented for the 2,177 threatened and Near Threatened bird species on the Red List, with a					
12 13 14 15 16	Number and Class of Implemented Conservation Actions In total, 5,424 conservation actions are documented as being implemented for the 2,177 threatened and Near Threatened bird species on the Red List, with a mean of 2.55 ± 0.028 conservation actions per species. The most frequent					
12 13 14 15 16 17	Number and Class of Implemented Conservation Actions In total, 5,424 conservation actions are documented as being implemented for the 2,177 threatened and Near Threatened bird species on the Red List, with a mean of 2.55 ± 0.028 conservation actions per species. The most frequent conservation action implemented was for a protected area to cover a population of					
12 13 14 15 16 17 18	Number and Class of Implemented Conservation Actions In total, 5,424 conservation actions are documented as being implemented for the 2,177 threatened and Near Threatened bird species on the Red List, with a mean of 2.55 ± 0.028 conservation actions per species. The most frequent conservation action implemented was for a protected area to cover a population of the species (74% of species). International trade regulations and action plans exist					

- and action plans, all had relatively high weighted-explained deviance, 0.68, 0.59,
- 23 0.55 and 0.54, respectively. Predictive models for other conservation actions, Ex Situ

1 conservation, monitoring, reintroduction, education and population protection 2 didn't explain the deviance as well, 0.38, 0.35, 0.29, 0.21, 0.2, respectively. 3 Red List category was the most important predictor for conservation action 4 implementation. More severely threatened species were more likely to be targeted 5 by more conservation actions, with Critically Endangered and Endangered species 6 having significantly more conservation actions than Vulnerable and Near 7 Threatened species ($F_{3,2173} = 45.56$, P < 0.001). 8 Species that live in Europe or multiple regions had the most conservation 9 actions implemented, while species in West and Central Asia, North Africa, and 10 Antarctica had the fewest ($F_{13,2163}$ = 21.69, P < 0.001). In addition, species that breed 11 in more countries have more conservation actions implemented ($F_{1,2175}$ = 240.4, P < 12 0.001). For every 1% increase in the amount-area of a species range within G20 or 13 OECD countries, the number of conservation actions increased by 0.00196 and 14 0.0093, respectively ($F_{1,2175} = 9.54$, P = 0.002; $F_{1,2175} = 148.8$, P < 0.001). As the area-15 weighted GDP of species increased, so did the likelihood that the species would have 16 conservation actions in place ($F_{1,2175} = 81.51$, P < 0.001). 17 Species' biology was also associated with the implementation of conservation 18 actions. Species with longer generation times were more likely to have more 19 conservation actions. For every year increase in generation length, the number of 20 conservation actions implemented increased by 0.13 ($F_{1,2175} = 482.6$, P < 0.001). 21 Species that inhabit marine and inland wetland had more conservation actions in 22 place than species in other habitats ($F_{7,2169} = 20.28$, P < 0.001). More specifically, 23 species in these habitats tended to have more monitoring, protected areas, invasive

1 alien species control/eradication, ex-situ conservation, and international legislation-. 2 The type of landmass where a species occurred was an important predictor variable 3 for all implemented conservation actions except education and awareness-raising, 4 reintroduction, and ex situ conservation, with more actions implemented for species 5 inhabiting oceanic islands ($F_{3,48}$ = 9.22, P < 0.001). 6 Taxonomic order was an important factor in all ten best models for 7 education and awareness-raising, action plans, ex situ conservation, international 8 legislation, and trade control. The taxonomic orders Anseriformes (ducks, geese, 9 and swans), Falconiformes (raptors), Gaviiformes (divers/loons), 10 Phoenicopteriformes (flamingoes), and Psittaciformes (parrots) had the highest 11 numbers of conservation actions while Caprimulgiformes (nightjars), 12 Columbiformes (pigeons), Cuculiformes (cuckoos), Passeriformes (perching birds), 13 and Piciformes (woodpeckers) had the fewest ($F_{23,2153} = 21.68$, P < 0.001). 14 15 **Conservation Actions and Population Trends** 16 Among threatened and Near Threatened bird species, 83% have decreasing 17 population trends, 3% increasing, 11% stable, and 2% have unknown population 18 trends (BirdLife International 2014). Population trend was a predictor variable in 19 58% of the models. Specifically, it was a predictor in all ten best models for *ex situ* 20 conservation, invasive alien species control/eradication, reintroduction, and

- 21 international trade controls. Species with increasing populations had more
- 22 conservation actions in place $(4.01 \pm .185)$ than those with decreasing (2.51 ± 0.03) ,
- 23 stable (2.47 \pm 0.09) or unknown population trends (0.98 \pm 0.14) (F_{3,2173} = 34.31, P <

0.001). The best generalized binomial regression model that explained an increasing
 or decreasing population trend based on the conservation actions in place included
 education and awareness-raising, international legislation, reintroduction, *ex-situ* conservation, and invasive alien species control/eradication (Table 2). Species with
 these conservation actions showed increased odds of having a positive population
 trend of 2.16, 2.62, 2.82, 3.09, and 10.63 respectively (Figure 2).

7

8 Discussion

9 These results depict both the biological and anthropogenic environment in 10 which conservation actions are most likely to be implemented and are most likely to 11 be effective. More severely threatened species received more types of conservation 12 actions, presumably because the conservation of more severely threatened species 13 is seen as more urgent, and/or because more threatened species face a wider range 14 of threats. Species with increasing population trends had 1.6 times more 15 conservation actions in place than those with stable or decreasing populations, 16 suggesting that implementation of multiple conservation actions may be more 17 effective in reducing extinction risk. In particular, the implementation of invasive 18 alien species control/eradication, ex-situ conservation, international legislation, 19 reintroduction, and education and awareness-raising were most frequently 20 associated with positive population trends. Knowledge of the circumstances in 21 which conservation actions are implemented as well as which ones are most 22 successful, such as we describe here, could tremendously benefit the future of species conservation with implications for future resource allocation for 23

1 conservation actions as well as assessments of the potential success of different

2 types of actions.

3 Biological factors important in predictive models of biodiversity threats, such 4 as generation length, clutch size, taxonomic group, and habitat type, were also 5 important in all of the best predictive models of conservation action 6 implementation. In particular, generation length was an important predictor for five 7 of the nine conservation action types assessed and is an important predictor in 8 threat models (Owens and Bennett 2000, Fisher and Owens 2004). Many of the 9 biological factors in the models are correlated with taxonomy, and closely related 10 species within taxonomic groups are generally susceptible to similar threats (Gaston 11 and Blackburn 1995, Mace 2004, Owens and Bennett 2000); consequently, they tend 12 to receive similar conservation actions. 13 Taxonomic order was an important factor associated with education and 14 awareness-raising, action plans, ex situ conservation, international legislation, and 15 trade control, suggesting that these five classes of conservation action tend to be 16 applied in a taxonomically selective way. Species in taxonomic groups that are 17 particularly threatened by over-exploitation, such as Anseriformes, which are 18 threatened by hunting (Green 1996), Psittaciformes, which are threatened by 19 trapping for the pet industry (Collar and Juniper 1992, Wright et al 2001) and 20 Falconiformes, some of which are threatened by trapping for falconry (Butchart et al 21 2005), receive a disproportionate number of conservation actions compared with 22 species in other orders. Species in these orders tend to be particularly palatable,

1 colorful, carnivorous, or otherwise charismatic, explaining both their attractiveness 2 for harvest as well as conservation attention (Leader-Williams & Dublin 2000). 3 Whether a species lives on an oceanic island, continental island, or continent 4 was an important predictor for six of the nine conservation actions. Being on an oceanic island was a strong predictor of the existence of action plans, international 5 6 legislation, international trade regulations, and invasive species control/eradication 7 implementation, while species on continents had more monitoring and protected 8 areas. Invasive species have been a leading cause of extinction for native species on 9 islands (Clavero and Garcia-Berthou 2004). However, eradicating invasive species is 10 an increasingly applied and successful conservation tool (Veitch, Clout, and Towns 11 2011). Our finding that populations of threatened and Near Threatened species are 12 ten times more likely to be increasing when invasive species control/eradication is 13 implemented is a strong signal that this conservation action has a positive impact on 14 such species. With ongoing declines in oceanic seabird populations, international 15 legislation has been strengthened to reduce threats to these species, as they 16 typically cross national borders and often use areas beyond national jurisdiction 17 while foraging or migrating (Croxall et al 2012, Wolf et al 2006). Given the high 18 rates of endemism and endangerment of species on oceanic islands, more protected 19 areas (and their effective management) could help conserve their populations (Kier 20 et al 2009).

The implementation of conservation actions requires adequate resources
(McCarthy et al. 2012), which explains the importance of geo-economic factors as
predictors of the implementation of many conservation actions. Geo-economic

1 factors were present in all of the ten best models, except for education and 2 awareness-raising, and species in more economically developed countries are more 3 likely to receive conservation actions. This appears to be consistent with the 4 Kuznets curve, which predicts that there is an hump-shaped relationship between wealth and environmental quality (Mills and Waite 2009), whereby improving 5 6 population trends for threatened and Near Threatened species coincided with 7 wealthy countries. However, among poor countries, increases in wealth can lead to 8 increased threats, which can create a complex relationship between a country's 9 financial resources and the conservation of biodiversity (Mills and Waite 2009). 10 Another complication with economic predictive variables is that finances often flow 11 across international borders, which can lead to the transfer of funds for 12 conservation efforts as well as the transfer of threats, such as logging and the 13 harvesting of species (Lenzen et al. 2012, Weinzettel et al 2013). However, some of 14 the richest countries have shown poor results with regard to species recovery, while 15 many of the best successes have come from countries with small per capita GDPs 16 (Rodrigues et al 2014), illustrating that finances alone cannot explain the 17 implementation or efficiency of conservation actions.-18 Reintroduction, *ex-situ*, invasive alien species control/eradication, education 19 and awareness-raising efforts, and international legislation are all significantly 20 associated with increasing population trends among species of conservation 21 concern. Action plans, monitoring, protected areas, and international trade controls 22 are associated as well, but not significantly. The reasons for these differences are 23 not clear. Certainly, reintroduction and invasive alien species control/eradication

1 are highly targeted actions, which can often yield dramatic positive results. 2 Conversely, action plans and monitoring are preconditions to other conservation 3 actions and alone are insufficient to ensure population increases (furthermore, the 4 existence of an action plan does not necessarily imply that it is being implemented 5 adequately, or at all). Unfortunately, trade controls can often be ineffective, with 6 illegal trade being a widespread issue for utilized species (Magnin 1991). In 7 addition, some conservation actions might have interactive effects that increase 8 opportunities for population recovery. For example, invasive species eradications 9 coupled with reintroductions might increase the likelihood of population recovery 10 more than one of these conservation actions alone.

11 A predictive science of conservation action implementation and effectiveness 12 should increase the future success of conservation efforts. While our models 13 accounted for many of the biological and anthropogenic factors thought to be 14 associated with threats to species and hence potentially with conservation action implementation, additional factors are likely to play a role. Climate change is an 15 important variable that we did not account for; however, all of the conservation 16 17 actions that we assessed can be implemented in a "climate smart" manner and 18 remain relevant in the presence of climate change (McClanahan et al 2008, Stein et 19 al 2014). Future efforts should also look at the relationship between particular threats and the implementation of conservation actions, specifically to measure the 20 21 alignment between them and to use that as a predictor for positive population 22 trends. Future research should investigate similar questions in other taxa and refine 23 our results to pinpoint the correlates of successful conservation actions and help

1 improve the overall effectiveness of conservation action for species of conservation

2 concern.

3

4 Acknowledgements

- 5 We thank the many thousands of individuals and organizations who contribute to
- 6 BirdLife's extinction risk assessments for species on the Red List, from which the
- 7 datasets used here are derived. We thank Mike Hoffmann for aiding in the initial
- 8 coordination of this project.

- 10
- 11
- 12

1

2 References

- 3
- 4 Barnosky, A.D., et al. (2011). Has the Earth's sixth mass extinction already arrived?
- 5 *Nature*, 471.7336 51-57.
- 6 BirdLife International (2014). Important Bird and Biodiversity Areas: A global
- 7 network for conserving nature and benefiting people. Cambridge: BirdLife
- 8 International. Available at http://www.birdlife.org/datazone/sowb/sowbpubs#IBA
- 9 Bland, L. M., Collen, B., Orme, C. D. L., & Bielby, J. (2015). Predicting the conservation
- 10 status of data-deficient species. *Conservation Biology*, *29*(1), 250-259.
- 11 Brooks, T.M., Collar, N.J., Green, R.E., Marsden, S.J. & Pain, D.J. (2008). The science of
- 12 bird conservation. *Bird Conservation International* 18, S2–S12.
- 13 Brooks, TM and Wright, SJ and Sheil, D. (2009) Evaluating the success of
- 14 conservation actions in safeguarding tropical forest biodiversity. *Conservation*
- 15 *Biology*, 23, (6), 1448-1457.
- 16 Butchart, S. H. M., et al. (2005). Using Red List Indices to measure progress towards
- 17 the 2010 target and beyond. *Philosophical Transactions of the Royal Society B:*
- 18 *Biological Sciences*, 360, 1454, 255-268.
- 19 Butchart, S. H. M., Stattersfield, A. J. and Collar, N. J. (2006) How many bird
- 20 extinctions have we prevented? *Oryx*, 40, 266–278.
- 21 Cabin, Robert J., and Randall J. Mitchell. (2000). To Bonferroni or not to Bonferroni:
- 22 when and how are the questions." Bulletin of the Ecological Society of America, 246-
- 23 248.

1	Cardillo et al (2006). Latent extinction risk and the future battlegrounds of mammal	
2	conservation. <i>PNAS</i> , 103, 4157–4161.	
3	Cardillo et al (2008). The predictability of extinction: biological and external	
4	correlates of decline in mammals. <i>PRSL B</i> , 275, 1441–8.	
5	Secretariat of the Convention on Biological Diversity (2014) Global Biodiversity	
6	Outlook 4. Montréal, 155 pages	
7		
8	Chapman, Colin C. A., et al. (2014). Safeguarding biodiversity: what is perceived as	Commented [MH2]: Not sure this formatting is right?
9	working, according to the conservation community?. <i>Oryx</i> , <u>Volume??</u> 1-6.	
10	Collar, N. J., and A. T. Juniper. (1992). Dimensions and causes of the parrot	
11	conservation crisis. New World parrots in crisis: solutions from conservation biology,	
12	1-24.	
13	Chapron, Guillaume, Raphaël Arlettaz, and Luigi Boitani. (2010). Why the inaction	
14	on biodiversity?. <i>Nature</i> 467.7314, 401-401.	
15	Christie, Mike, et al. (2006). Valuing the diversity of biodiversity. <i>Ecological</i>	
16	economics 58.2, 304-317.	
17	Clavero, <u>MiguelM</u> , and Emili Garcia-Berthou. (2005). Invasive species are a leading	
18	cause of animal extinctions. TRENDS in Ecology and Evolution, 20.3, 110-110.	
19	Clout, M. N., and C. R. Veitch. (2002). Turning the tide of biological invasion: the	
20	potential for eradicating invasive species." Turning the tide: the eradication of	
21	invasive species. IUCN SSC Invasive Species Specialist Group, Gland, Switzerland and	
22	Cambridge, UK, 1-3.	

- 1 Cooper, N., et al. (2008). Macroecology and extinction risk correlates of frogs. *Global*
- 2 *Ecology and Biogeography* 17.2, 211-221.
- 3 Croxall, J. P., et al. (2012). Seabird conservation status, threats and priority actions: a
- 4 global assessment." Bird Conservation International 22.01, 1-34.
- 5 Davidson et al. (2009). Multiple ecological pathways to extinction in mammals.
- 6 *PNAS*, 106, 10702–5.
- 7 Davies, R. G., et al. (2006). Human impacts and the global distribution of extinction
- 8 risk. Proceedings of the Royal Society B: Biological Sciences, 273.1598, 2127-2133.
- 9 Fisher, D. O., and I.P.F. Owens. (2004). The comparative method in conservation
- 10 biology. Trends in Ecology & Evolution 19.7, 391-398.
- 11 Gaston, K. J., and T. M. Blackburn. (1995). Birds, body size and the threat of
- 12 extinction. Philosophical Transactions of the Royal Society B: Biological Sciences.
- 13 347.1320, 205-212.
- 14 Green, A. J. (1996). Analyses of globally threatened Anatidae in relation to threats,
- 15 distribution, migration patterns, and habitat use." *Conservation Biology*, 10.5, 1435-
- 16 1445.
- 17 Hayward, M. W. (2011). Using the IUCN Red List to determine effective conservation
- 18 strategies. *Biodiversity and Conservation*, 20.12, 2563-2573.
- 19 Hoffmann, M., et al. (2010). The impact and shortfall of conservation on the status of
- 20 the world's vertebrates. *Science* 330, 1503-1509.
- 21 Hoffmann, M. et al. (2015). The difference conservation makes to extinction risk of
- 22 the world's ungulates. Conservation Biology, Article first published online: 27 APR
- 23 2015 DOI: 10.1111/cobi.12519

- 1 Johnson, J. B., and K. S. Omland. (2004). Model selection in ecology and evolution.
- 2 Trends in ecology & evolution 19.2, 101-108.
- 3 Kier, G., et al. (2009). A global assessment of endemism and species richness across
- 4 island and mainland regions. Proceedings of the National Academy of Sciences,
- 5 106.23, 9322-9327.
- 6 Leader-Williams, N., and H. T. Dublin. (2000). Charismatic megafauna as 'flagship
- 7 species'. Priorities for the conservation of mammalian diversity: has the panda had its
 8 day, 53-81.
- 9 Lenzen et al. (2012). International trade drives biodiversity threats in developing
- 10 nations. *Nature* 486, 109-112
- 11 Mace, G. M. "The role of taxonomy in species conservation.(2004). Philosophical
- 12 Transactions of the Royal Society of London. Series B: Biological Sciences, 359.1444,
- 13 711-719.
- 14 Magnin, G. (1991) Hunting and persecution of migratory birds in the Mediterranean
- 15 region. In Salathe, T. (ed.) Conserving Migratory Birds: 63-79. International Council
- 16 for Bird Preservation, Cambridge, UK.
- 17 McCarthy, D. P., et al. (2012). Financial costs of meeting global biodiversity
- 18 conservation targets: current spending and unmet needs. *Science*, 338.6109, 946-
- 19 949.
- 20 McClanahan, T. R., et al. (2008). Conservation action in a changing climate.
- 21 Conservation Letters 1.2, 53-59.
- 22 McKinney, M. L. (2002). Effects of national conservation spending and amount of
- 23 protected area on species threat rates." *Conservation Biology*, 16.2, 539-543.

- 1 Mills, J. H., and T.A. Waite. (2009). Economic prosperity, biodiversity conservation,
- 2 and the environmental Kuznets curve. *Ecological Economics*, 68.7, 2087-2095.
- 3 Owens, I.P.F., and P.M. Bennett. (2000). Ecological basis of extinction risk in birds:
- 4 habitat loss versus human persecution and introduced predators." Proceedings of
- 5 the National Academy of Sciences 97.22, 12144-12148.
- 6 Pimm, S. L., et al. (2014). The biodiversity of species and their rates of extinction,
- 7 distribution, and protection. *Science*, 344.6187, 1246752.
- 8 Purvis, A., et al. (2006). Predicting extinction risk in declining species." Proceedings
- 9 of the Royal Society of London. Series B: Biological Sciences, 267.1456, 1947-1952.
- 10 Rodrigues, A.S.L., et al. (2006). The value of the IUCN Red List for conservation."
- 11 Trends in Ecology & Evolution, 21.2, 71-76.
- 12 Rodrigues A.S.L., et al. (2014) Spatially Explicit Trends in the Global Conservation
- 13 Status of Vertebrates. PLoS ONE 9.11, e113934.doi:10.1371/journal.pone.0113934
- 14 Salafsky, N., et al. (2008). A standard lexicon for biodiversity conservation: unified
- 15 classifications of threats and actions." *Conservation Biology*, 22.4, 897-911.
- 16 Stein, B.A. et al. (eds.). (2014). Climate-Smart Conservation: Putting Adaptation
- 17 Principles into Practice. National Wildlife Federation, Washington, DC.
- 18 http://www.nwf.org/pdf/Climate-Smart-Conservation/NWF-Climate-Smart-
- 19 <u>Conservation_5-08-14.pdf</u>
- 20 Veitch, C. R.; Clout, M. N. and Towns, D. R. (eds.) (2011). Island Invasives: Eradication
- 21 and Management. Proceedings of the International Conference on Island Invasives.
- 22 Gland, Switzerland: IUCN and Auckland, New Zealand: CBB. xii + 542pp.

- 1 Weinzettel et al. (2013). Affluence drives the global displacement of land use. *Global*
- 2 Environmental Change, 23, 433-438.
- 3 Williams D.R. et al. (2012). Bird conservation: global evidence for the effects of
- 4 interventions. Exeter, Pelagic Publishing.
- 5 Wolf, S., et al. (2006). Transboundary seabird conservation in an important North
- 6 American marine ecoregion. *Environmental Conservation*, 33.04, 294-305.
- 7 Wright, T.F., et al. (2001). Nest poaching in Neotropical parrots. *Conservation*
- 8 Biology, 15.3, 710-720.
- 9 Zuur, A.F., E.N. Ieno, and C.S. Elphick. (2010). A protocol for data exploration to
- 10 avoid common statistical problems. *Methods in Ecology and Evolution*, 1.1, 3-14.
- 11
- 12
- 13
- 14
- -
- 15
- 16
- 17

Tables

3 4

Table 1. Types of conservation actions underway that were used in the analysis, plus the variables used to predict conservation action implementation with citations from papers that found these variables to be important in predicting extinction risk.

Conservation Actions	Definition	IUCN classification scheme		
Action Plan	An action/recovery plan exists for the species	Research Needed 2 Conservation Planning		
Monitoring	The species is subject to a systematic monitoring scheme	Research Needed 3 Monitoring		
Protected Area	The species occurs in at least one protected area			
Invasive Species Control/Eradication	Invasive alien species which impact the species are being (or have been) eradicated, controlled or prevented from spreading	2.2 Invasive/problematic species control		
Reintroduction	The species is being (or has been successfully) reintroduced or introduced benignly for conservation purposes	3.3 Species re- introduction		
Ex Situ	The species is subject to ex-situ conservation	3.4 Ex-situ conservation		
Education /awareness- raising	The species is subject to ongoing (or recent) education and awareness programmes	4 Education & awareness		
International Legislation	Species is listed in international legislation (e.g. on Appendicies of CITES and/or CMS and/or its Agreements and Instruments (ACAP, AEWA etc)	5 Law & policy		
International Trade Management	Species is subject to international management/trade controls	6 Livelihood, economic & other incentives		

Predictor Variables	Citations
Direction of population Trend	
IUCN Red List Category	
Taxonomic Order	Mace 2004
Body Mass	Gaston and Blackburn 1995; Owens and Bennett 2000; Fisher and Owens 2004;
Clutch Size	Fisher and Owens 2004
Generation Length	Owens and Bennett 2000; Fisher and Owens 2004;
Landmass Type	Davies et al 2006
Habitat Type	Owens and Bennett 2000
Biogeographic Region	Purvis et al 2000; Cooper et al 2008
Number of Countries in Species Range	
Size of Breeding Range	Fisher and Owens 2004; Owens and Bennett 2000
Proportion of Range in G20 countries	Chapron et al 2010

Proportion of Range in OECD
countriesChristie et al 2006GDP of Countries Within Species
RangeMcKinney 2002; Davies et al 2006

- ~

Table 2. AICc models for conservation actions associated with increasing population trends of Threatened and Near Threatened species.

				ΔAI	wei
Population Trend	logL	k	AICc	Cc	ght
Education + Int Legislation + Reintroduction + Ex Situ +	-		513.8		-
Invasive Control	-250.90	5	5	0.00	0.35
Education + Int Legislation + Reintroduction + Ex Situ +			514.1		
Invasive Control + Action Plan	-250.05	6	7	0.32	0.30
Education + Int Legislation + Reintroduction + Ex Situ +			514.8		
Invasive Control + Action Plan + Protected Areas	-249.39	7	5	1.00	0.21
Education + Int Legislation + Reintroduction + Ex Situ +			516.2		
Invasive Control + Action Plan + Protected Areas + Int Trade	-249.09	8	7	2.42	0.10
Education + Int Legislation + Reintroduction + Ex Situ +					
Invasive Control + Action Plan + Protected Areas + Int Trade +			518.1		
Monitoring	-249.00	9	3	4.27	0.04

- 1 Figures
- 2 Figure 1. Schematic of the data flow.
- 3 Figure 2. Estimate and 95% confidence interval of odds ratio of implemented
- 4 conservation actions associated with increasing population trends of threatened
- 5 and Near Threatened bird species.