1,135 research outputs found

    The M-type stars

    Get PDF
    The papers in this volume cover the following topics: (1) basic properties and photometric variability of M and related stars; (2) spectroscopy and nonthermal processes; (3) circumstellar radio molecular lines; (4) circumstellar shells, the formation of grains, and radiation transfer; (5) mass loss; (6) circumstellar chemistry; (7) thermal atmospheric models; (8) quasi-thermal models; (9) observations on the atmospheres of M dwarfs; and (1) theoretical work on M dwarfs

    Exhumation of the Sierra de Cameros (Iberian Range, Spain): constraints from low-temperature thermochronology

    Get PDF
    We present new fission-track and (U–Th)/He data from apatite and zircon in order to reconstruct the exhumation of the Sierra de Cameros, in the northwestern part of Iberian Range, Spain. Zircon fission-track ages from samples from the depocentre of the basin were reset during the metamorphic peak at approximately 100 Ma. Detrital apatites from the uppermost sediments retain fission-track age information that is older than the sediment deposition age, indicating that these rocks have not exceeded 110 8C. Apatites from deeper in the stratigraphic sequence of the central part of the basin have fission-track ages of around 40 Ma, significantly younger than the stratigraphic age, recording the time of cooling after peak metamorphic conditions. Apatite (U–Th)/He ages in samples from these sediments are 31–40 Ma and record the last period of cooling during Alpine compression. The modelled thermal history derived from the uppermost sediments indicates that the thermal pulse associated with peak metamorphism was rapid, and that the region has cooled continuously to the present. The estimated palaeogeothermal gradient is around 86 8C km21 and supports a tectonic model with a thick sedimentary fill (c. 8 km) and explains the origin of the low-grade metamorphism observed in the oldest sediments

    Assessing Ozone-Related Health Impacts under a Changing Climate

    Get PDF
    Climate change may increase the frequency and intensity of ozone episodes in future summers in the United States. However, only recently have models become available that can assess the impact of climate change on O(3) concentrations and health effects at regional and local scales that are relevant to adaptive planning. We developed and applied an integrated modeling framework to assess potential O(3)-related health impacts in future decades under a changing climate. The National Aeronautics and Space Administration–Goddard Institute for Space Studies global climate model at 4° × 5° resolution was linked to the Penn State/National Center for Atmospheric Research Mesoscale Model 5 and the Community Multiscale Air Quality atmospheric chemistry model at 36 km horizontal grid resolution to simulate hourly regional meteorology and O(3) in five summers of the 2050s decade across the 31-county New York metropolitan region. We assessed changes in O(3)-related impacts on summer mortality resulting from climate change alone and with climate change superimposed on changes in O(3) precursor emissions and population growth. Considering climate change alone, there was a median 4.5% increase in O(3)-related acute mortality across the 31 counties. Incorporating O(3) precursor emission increases along with climate change yielded similar results. When population growth was factored into the projections, absolute impacts increased substantially. Counties with the highest percent increases in projected O(3) mortality spread beyond the urban core into less densely populated suburban counties. This modeling framework provides a potentially useful new tool for assessing the health risks of climate change

    Poincare Semigroup Symmetry as an Emergent Property of Unstable Systems

    Full text link
    The notion that elementary systems correspond to irreducible representations of the Poincare group is the starting point for this paper, which then goes on to discuss how a semigroup for the time evolution of unstable states and resonances could emerge from the underlying Poincare symmetry. Important tools in this analysis are the Clebsch-Gordan coefficients for the Poincare group.Comment: 17 pages, 1 figur
    • 

    corecore