1,673 research outputs found

    Optimum community energy storage for renewable energy and demand load management

    Get PDF
    While the management of PV generation is the prime application of residential batteries, they can deliver additional services in order to help systems to become cost-competitive. They can level-out the demand and potentially reduce the cost and emissions of the energy system by reducing demand peaks. In this study, community energy storage (CES) is optimised to perform both PV energy time-shift and demand load shifting (using retail tariffs with varying prices blocks) simultaneously. The optimisation method obtains the techno-economic benefits of CES systems as a function of the size of the community ranging from a single home to a 100-home community in two different scenarios for the United Kingdom: the year 2020 and a hypothetical zero emissions target. It is demonstrated that the levelised cost and levelised value of CES systems reach intermediate values to those achieved when both applications are performed independently. For the optimal performance of a battery system being charged from both local PV plants and the grid, our results suggest that the battery should be sized suitable to ensure it can fully discharge during the peak period

    Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields

    Get PDF
    Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987–989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure

    Assessing the accuracy of loss estimation methods for supercapacitor energy storage devices operating under constant power cycling

    Get PDF
    This paper assesses different energy loss estimation methods using the supercapacitor model parameters extracted from the electrochemical impedance spectroscopy (EIS). Two energy loss estimation methods are applied to two similar supercapacitors from different manufacturers operating under constant power charge-discharge cycling. The simpler loss method uses only the impedance data that corresponds to the cycle frequency and the instantaneous current data whilst the more complex method uses the detailed impedance vs frequency dependency and the corresponding current harmonics available from the FFT. The experimental loss data (the benchmark) uses integration of instantaneous power processed by the supercapacitor. By comparing the difference between the estimated and the experimental losses, the performance of each method is assessed and the factors that influence the accuracy of the two loss estimation methods as well as their limitations are highlighted

    Evaluation of the impact of high bandwidth energy storage systems on DC protection

    Get PDF
    The integration of high bandwidth energy storage systems (ESS) in compact DC electrical power systems can increase the operational capability and overall flexibility of the network. However, the impact of ESSs on the performance of existing DC protection systems is not well understood. This paper identifies the key characteristics of the ESS that determine the extent of the protection blinding effects on slower acting generator systems on the network. It shows that higher fault impedances beyond that of an evaluated critical level will dampen the response of slower acting generator systems, decreasing the speed of corresponding overcurrent protection operation. The paper demonstrates the limitations of existing protection solutions and identifies more suitable protection approaches to remove/minimize the effects of protection blinding

    A stochastic model of the emergence of autocatalytic cycles

    Get PDF
    Autocatalytic cycles are rather common in biological systems and they might have played a major role in the transition from non-living to living systems. Several theoretical models have been proposed to address the experimentalists during the investigation of this issue and most of them describe a phase transition depending upon the level of heterogeneity of the chemical soup. Nevertheless, it is well known that reproducing the emergence of autocatalytic sets in wet laboratories is a hard task. Understanding the rationale at the basis of such a mismatch between theoretical predictions and experimental observations is therefore of fundamental importance. We here introduce a novel stochastic model of catalytic reaction networks, in order to investigate the emergence of autocatalytic cycles, sensibly considering the importance of noise, of small-number effects and the possible growth of the number of different elements in the system. Furthermore, the introduction of a temporal threshold that defines how long a specific reaction is kept in the reaction graph allows to univocally define cycles also within an asynchronous framework. The foremost analyses have been focused on the study of the variation of the composition of the incoming flux. It was possible to show that the activity of the system is enhanced, with particular regard to the emergence of autocatalytic sets, if a larger number of different elements is present in the incoming flux, while the specific length of the species seems to entail minor effects on the overall dynamics

    Cross-correlating Carbon Monoxide Line-intensity Maps with Spectroscopic and Photometric Galaxy Surveys

    Get PDF
    Line-intensity mapping (LIM or IM) is an emerging field of observational work, with strong potential to fit into a larger effort to probe large-scale structure and small-scale astrophysical phenomena using multiple complementary tracers. Taking full advantage of such complementarity means, in part, undertaking line-intensity surveys with galaxy surveys in mind. We consider the potential for detection of a cross-correlation signal between COMAP and blind surveys based on photometric redshifts (as in COSMOS) or based on spectroscopic data (as with the HETDEX survey of Lyman-α\alpha emitters). We find that obtaining σz/(1+z)0.003\sigma_z/(1+z)\lesssim0.003 accuracy in redshifts and 104\gtrsim10^{-4} sources per Mpc3^3 with spectroscopic redshift determination should enable a CO-galaxy cross spectrum detection significance at least twice that of the CO auto spectrum. Either a future targeted spectroscopic survey or a blind survey like HETDEX may be able to meet both of these requirements.Comment: 19 pages + appendix (31 pages total), 16 figures, 6 tables; accepted for publication in Ap

    Impact of naturally spawning captive-bred Atlantic salmon on wild populations: depressed recruitment and increased risk of climate-mediated extinction

    Get PDF
    The assessment report of the 4th International Panel on Climate Change confirms that global warming is strongly affecting biological systems and that 20–30% of species risk extinction from projected future increases in temperature. It is essential that any measures taken to conserve individual species and their constituent populations against climate-mediated declines are appropriate. The release of captive bred animals to augment wild populations is a widespread management strategy for many species but has proven controversial. Using a regression model based on a 37-year study of wild and sea ranched Atlantic salmon (Salmo salar) spawning together in the wild, we show that the escape of captive bred animals into the wild can substantially depress recruitment and more specifically disrupt the capacity of natural populations to adapt to higher winter water temperatures associated with climate variability. We speculate the mechanisms underlying this seasonal response and suggest that an explanation based on bio-energetic processes with physiological responses synchronized by photoperiod is plausible. Furthermore, we predict, by running the model forward using projected future climate scenarios, that these cultured fish substantially increase the risk of extinction for the studied population within 20 generations. In contrast, we show that positive outcomes to climate change are possible if captive bred animals are prevented from breeding in the wild. Rather than imposing an additional genetic load on wild populations by releasing maladapted captive bred animals, we propose that conservation efforts should focus on optimizing conditions for adaptation to occur by reducing exploitation and protecting critical habitats. Our findings are likely to hold true for most poikilothermic species where captive breeding programmes are used in population management

    Protection system for an electrical power network

    Get PDF
    The invention is a means of fault detection and location for dc networks. AC systems attempt to measure the inductance of the line; this is not possible in a dc system. Instead, in this invention, the inductance is estimated from the initial rate of discharge of the current from the dc bus capacitor on the converter feeding the dc network. This will reduce the duration that a fault will exist, reducing damage and improving safety, as well as improving discrimination so giving a more reliable system
    corecore