research

Cross-correlating Carbon Monoxide Line-intensity Maps with Spectroscopic and Photometric Galaxy Surveys

Abstract

Line-intensity mapping (LIM or IM) is an emerging field of observational work, with strong potential to fit into a larger effort to probe large-scale structure and small-scale astrophysical phenomena using multiple complementary tracers. Taking full advantage of such complementarity means, in part, undertaking line-intensity surveys with galaxy surveys in mind. We consider the potential for detection of a cross-correlation signal between COMAP and blind surveys based on photometric redshifts (as in COSMOS) or based on spectroscopic data (as with the HETDEX survey of Lyman-α\alpha emitters). We find that obtaining σz/(1+z)0.003\sigma_z/(1+z)\lesssim0.003 accuracy in redshifts and 104\gtrsim10^{-4} sources per Mpc3^3 with spectroscopic redshift determination should enable a CO-galaxy cross spectrum detection significance at least twice that of the CO auto spectrum. Either a future targeted spectroscopic survey or a blind survey like HETDEX may be able to meet both of these requirements.Comment: 19 pages + appendix (31 pages total), 16 figures, 6 tables; accepted for publication in Ap

    Similar works