276 research outputs found

    Effect of diluent type, cryoprotectant concentration, storage method and freeze/thaw rates on the post-thaw quality and fertility of cryopreserved alpaca spermatozoa

    Get PDF
    This study compared protocols for cryopreservation of ejaculated, papain-treated alpaca spermatozoa. This included different concentrations of egg yolk (EY; 5, 10 or 15%) and glycerol (2, 5 or 10%), diluent types (SHOTOR, lactose, skim milk or INRA-96™), freeze rates (2, 4 or 8 cm above liquid nitrogen; LN), thaw rates (37 °C for 1 min or 42 °C for 20 sec) and storage vessels (pellets, 0.25 mL straws or 0.5 mL straws). Spermatozoa were assessed pre-freeze and 0, 30, 60 and 90 min post-thaw. Forty-one hembras were inseminated with either fresh, papain-treated or frozen-thawed spermatozoa. Motility was affected by EY concentration (P < 0.001), diluent type (P < 0.001), freeze rate (P = 0.003) and storage vessel (P = 0.001). Viability was affected by EY concentration (P < 0.001), diluent type (P < 0.001), storage vessel (P = 0.002) and thaw rate (P = 0.03). For artificial insemination (AI), semen was diluted 1:3 in a lactose-based diluent, with 5% EY and glycerol. Freezing was in 0.5 mL straws, 2 cm above LN for 4 min then thawing at 37 °C for 1 min. Pregnancy rates of those ovulated (n = 26) were not different (1/5 fresh, 1/4 papain-treated, 0/17 frozen-thawed; P = 0.10). Pregnancy can be achieved after AI with papain-treated spermatozoa. Further work is needed to determine the optimal dose, timing and location for insemination

    Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2

    Full text link
    We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page

    Measurements of the Q2Q^2-Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n

    Get PDF
    The structure functions g1p and g1n have been measured over the range 0.014 < x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV longitudinally polarized electrons from polarized protons and deuterons. We find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all available data we find Γ1pΓ1n=0.176±0.003±0.007\Gamma_1^p - \Gamma_1^n =0.176 \pm 0.003 \pm 0.007 at Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm 0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Measurements of the Q2Q^2 dependence of the proton and neutron spin structure functions g1pg^p_1 and g1ng^n_1

    Get PDF
    he structure functions g1p and g1n have been measured over the range 0.014 < x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV longitudinally polarized electrons from polarized protons and deuterons. We find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all available data we find Γ1pΓ1n=0.176±0.003±0.007\Gamma_1^p - \Gamma_1^n =0.176 \pm 0.003 \pm 0.007 at Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm 0.005

    Measurement of the deuteron spin structure function g1d(x)g^{d}_1(x) for 1 (GeV/c)2<Q2<40 (GeV/c)21\ (GeV/c)^2 < Q^2 < 40\ (GeV/c)^2.

    Get PDF
    New measurements are reported on the deuteron spin structure function g_1^d. These results were obtained from deep inelastic scattering of 48.3 GeV electrons on polarized deuterons in the kinematic range 0.01 < x < 0.9 and 1 < Q^2 < 40 (GeV/c)^2. These are the first high dose electron scattering data obtained using lithium deuteride (6Li2H) as the target material. Extrapolations of the data were performed to obtain moments of g_1^d, including Gamma_1^d, and the net quark polarization Delta Sigma

    Measurements of R=sigma_L/sigma_T for 0.03<x<0.1 and Fit to World Data

    Get PDF
    Measurements were made at SLAC of the cross section for scattering 29 GeV electrons from carbon at a laboratory angle of 4.5 degrees, corresponding to 0.03<x<0.1 and 1.3<Q^2<2.7 GeV^2. Values of R=sigma_L/sigma_T were extracted in this kinematic range by comparing these data to cross sections measured at a higher beam energy by the NMC collaboration. The results are in reasonable agreement with pQCD calculations and with extrapolations of the R1990 parameterization of previous data. A new fit is made including these data and other recent results.Comment: 8 pages, 4 figures, late
    corecore