190 research outputs found

    Integrated Water Demand/Supply Management in Southwestern Skane: A Preliminary Analysis

    Get PDF
    The water management system in South-Western Skane features different water supply sources (surface and groundwater), municipal water demand zones, and several agricultural water users. In the future the Bolmen Lake scheme will be made operational. The major question now is what are the advantages and disadvantages of integrating all sub-regional solutions into a regional water resources system (particularly in terms of increased reliability). River Basins are the main feature of the sub-regional water resource systems in South Western Skane. A simulation model, MITSIM-2, was developed to analyze the hydrologic performance of these systems. Using this model and water use projections based upon projections of the future demo-economic structure of South Western Skane, a preliminary analysis of a regionally integrated water supply system was performed. This analysis examined the ability of the regionally integrated system to satisfy the water requirements of South Western Skane under different development scenarios

    Benefits of greenhouse gas mitigation on the supply, management, and use of water resources in the United States

    Get PDF
    Climate change impacts on water resources in the United States are likely to be far-reaching and substantial because the water is integral to climate, and the water sector spans many parts of the economy. This paper estimates impacts and damages from five water resource-related models addressing runoff, drought risk, economics of water supply/demand, water stress, and flooding damages. The models differ in the water system assessed, spatial scale, and unit of assessment, but together provide a quantitative and descriptive richness in characterizing water sector effects that no single model can capture. The results, driven by a consistent set of greenhouse gas (GHG) emission and climate scenarios, examine uncertainty from emissions, climate sensitivity, and climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, broad conclusions can be drawn regarding patterns of change and benefits of GHG mitigation. Four key findings emerge: 1) GHG mitigation substantially reduces hydro-climatic impacts on the water sector; 2) GHG mitigation provides substantial national economic benefits in water resources related sectors; 3) the models show a strong signal of wetting for the Eastern US and a strong signal of drying in the Southwest; and 4) unmanaged hydrologic systems impacts show strong correlation with the change in magnitude and direction of precipitation and temperature from climate models, but managed water resource systems and regional economic systems show lower correlation with changes in climate variables due to non-linearities created by water infrastructure and the socio-economic changes in non-climate driven water demand

    Impacts of considering climate variability on investment decisions in Ethiopia:

    Get PDF
    "Extreme interannual variability of precipitation within Ethiopia is not uncommon, inducing droughts or floods and often creating serious repercussions on agricultural and non-agricultural commodities. An agro-economic model, including mean climate variables, was developed to assess irrigation and road construction investment strategies in comparison to a baseline scenario over a 12-year time horizon. The motivation for this work is to evaluate whether the inclusion of climate variability in the model has a significant effect on prospective investment strategies and the resulting country-wide economy. The mean climate model is transformed into a variable climate model by dynamically adding yearly climate-yield factors, which influence agricultural production levels and linkages to non-agricultural goods. Nine sets of variable climate data are processed by the new model to produce an ensemble of potential economic prediction indicators. Analysis of gross domestic product and poverty rate reveal a significant overestimation of the country's future welfare by the mean climate model method, in comparison to probability density functions created from the variable climate ensemble. The ensemble is further utilized to demonstrate risk assessment capabilities. The addition of climate variability to the agro-economic model provides a framework, including realistic ranges of economic values, from which Ethiopian planners may make strategic decisions." Authors' abstractClimate variability, Water, Droughts, Flooding, Irrigation Economic aspects, Road construction Economic aspects, Investments, Economic situation, Agro-economic model,

    A Framework for Analysis of the Uncertainty of Socioeconomic Growth and Climate Change on the Risk of Water Stress: a Case Study in Asia

    Get PDF
    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in how these factors change in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—internally consistent across economics, emissions, climate, and population—to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. If socio-economic growth is unconstrained by global actions to limit greenhouse gas concentrations, water-stressed populations may increase from about 800 million to 1.7 billion in this region.The Joint Program on the Science and Policy of Global Change is funded by a consortium of industrial and foundation sponsors. For the complete list see http://globalchange.mit.edu/sponsors/all

    Competition for water for the food system

    Get PDF
    Although the global agricultural system will need to provide more food for a growing and wealthier population in decades to come, increasing demands for water and potential impacts of climate change pose threats to food systems. We review the primary threats to agricultural water availability, and model the potential effects of increases in municipal and industrial (M&I) water demands, environmental flow requirements (EFRs) and changing water supplies given climate change. Our models show that, together, these factors cause an 18 per cent reduction in the availability of worldwide water for agriculture by 2050. Meeting EFRs, which can necessitate more than 50 per cent of the mean annual run-off in a basin depending on its hydrograph, presents the single biggest threat to agricultural water availability. Next are increases in M&I demands, which are projected to increase upwards of 200 per cent by 2050 in developing countries with rapidly increasing populations and incomes. Climate change will affect the spatial and temporal distribution of run-off, and thus affect availability from the supply side. The combined effect of these factors can be dramatic in particular hotspots, which include northern Africa, India, China, parts of Europe, the western US and eastern Australia, among others

    The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum

    Get PDF
    Relief of iron (Fe) limitation in the surface Southern Ocean has been suggested as one driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2). The proposed cause is enhanced deposition of Fe-bearing atmospheric dust to the oceans during glacial intervals, with consequent effects on export production and the carbon cycle. However, understanding the role of enhanced atmospheric Fe supply in biogeochemical cycles is limited by knowledge of the fluxes and ‘bioavailability’ of atmospheric Fe during glacial intervals. Here, we assess the effect of Fe fertilization by dust, dry-extracted from the Last Glacial Maximum portion of the EPICA Dome C Antarctic ice core, on the Antarctic diatom species Eucampia antarctica and Proboscia inermis. Both species showed strong but differing reactions to dust addition. E. antarctica increased cell number (3880 vs. 786 cells mL-1), chlorophyll a (51 vs. 3.9 μg mL-1) and particulate organic carbon (POC; 1.68 vs. 0.28 μg mL-1) production in response to dust compared to controls. P. inermis did not increase cell number in response to dust, but chlorophyll a and POC per cell both strongly increased compared to controls (39 vs. 15 and 2.13 vs. 0.95 ng cell-1 respectively). The net result of both responses was a greater production of POC and chlorophyll a, as well as decreased Si:C and Si:N incorporation ratios within cells. However, E, antarctica decreased silicate uptake for the same nitrate and carbon uptake, while P. inermis increased carbon and nitrate uptake for the same silicate uptake. This suggests that nutrient utilization changes in response to Fe addition could be driven by different underlying mechanisms between different diatom species. Enhanced supply of atmospheric dust to the surface ocean during glacial intervals could therefore have driven nutrient-utilization changes which could permit greater carbon fixation for lower silica utilization. Additionally, both species responded more strongly to lower amounts of direct Fe chloride addition than they did to dust, suggesting that not all the Fe released from dust was in a bioavailable form available for uptake by diatoms

    Toward evaluating the effect of climate change on investments in the water resources sector: insights from the forecast and analysis of hydrological indicators in developing countries

    Get PDF
    The World Bank has recently developed a method to evaluate the effects of climate change on six hydrological indicators across 8951 basins of the world. The indicators are designed for decision-makers and stakeholders to consider climate risk when planning water resources and related infrastructure investments. Analysis of these hydrological indicators shows that, on average, mean annual runoff will decline in southern Europe; most of Africa; and in southern North America and most of Central and South America. Mean reference crop water deficit, on the other hand, combines temperature and precipitation and is anticipated to increase in nearly all locations globally due to rising global temperatures, with the most dramatic increases projected to occur in southern Europe, southeastern Asia, and parts of South America. These results suggest overall guidance on which regions to focus water infrastructure solutions that could address future runoff flow uncertainty. Most important, we find that uncertainty in projections of mean annual runoff and high runoff events is higher in poorer countries, and increases over time. Uncertainty increases over time for all income categories, but basins in the lower and lower-middle income categories are forecast to experience dramatically higher increases in uncertainty relative to those in the upper-middle and upper income categories. The enhanced understanding of the uncertainty of climate projections for the water sector that this work provides strongly support the adoption of rigorous approaches to infrastructure design under uncertainty, as well as design that incorporates a high degree of flexibility, in response to both risk of damage and opportunity to exploit water supply 'windfalls' that might result, but would require smart infrastructure investments to manage to the greatest benefit

    Partial costs of global climate change adaptation for the supply of raw industrial and municipal water: a methodology and application

    Get PDF
    Despite growing recognition of the importance of climate change adaptation, few global estimates of the costs involved are available for the water supply sector. We present a methodology for estimating partial global and regional adaptation costs for raw industrial and domestic water supply, for a limited number of adaptation strategies, and apply the method using results of two climate models. In this paper, adaptation costs are defined as those for providing enough raw water to meet future industrial and municipal water demand, based on country-level demand projections to 2050. We first estimate costs for a baseline scenario excluding climate change, and then additional climate change adaptation costs. Increased demand is assumed to be met through a combination of increased reservoir yield and alternative backstop measures. Under such controversial measures, we project global adaptation costs of 12bnp.a.,with839012 bn p.a., with 83-90% in developing countries; the highest costs are in Sub-Saharan Africa. Globally, adaptation costs are low compared to baseline costs (73 bn p.a.), which supports the notion of mainstreaming climate change adaptation into broader policy aims. The method provides a tool for estimating broad costs at the global and regional scale; such information is of key importance in international negotiations. © 2010 IOP Publishing Ltd

    Iron, silicate, and light co-limitation of three Southern Ocean diatom species

    Get PDF
    The effect of combined iron, silicate, and light co-limitation was investigated in the three diatom species Actinocyclus sp. Ehrenberg, Chaetoceros dichaeta Ehrenberg, and Chaetoceros debilis Cleve, isolated from the Southern Ocean (SO). Growth of all species was co-limited by iron and silicate, reflected in a significant increase in the number of cell divisions compared to the control. Lowest relative Si uptake and drastic frustule malformation was found under iron and silicate co-limitation in C. dichaeta, while Si limitation in general caused cell elongation in both Chaetoceros species. Higher light intensities similar to SO surface conditions showed a negative impact on growth of C. dichaeta and Actinocyclus sp. and no effect on C. debilis. This is in contrast to the assumed light limitation of SO diatoms due to deep wind driven mixing. Our results suggest that growth and species composition of Southern Ocean diatoms is influenced by a sensitive interaction of the abiotic factors, iron, silicate, and light
    corecore