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Impacts of Spatial and Temporal Data on a Climate Change 
Assessment of Blue Nile Runoff 

J. Niemann, K. Strzepek, D. Yates 

1. Introduction 

During the past decade, an increasing amount of attention has been paid to the possibility of 

human induced climatic change. While several studies have focused on the extent of climate 

change due to the increased levels of greenhouse gases in the atmosphere (National Research 

Council, 1979, 1987, World Meteorological Organization, 1986, Houghton et al. 1990), other 

studies have progressed beyond the fields of climatology and atmospheric science into the 

interdisciplinary study of impact assessment and policy analysis. Cohen (1991) reports the 

existence of more than 40 regional impact case studies that have been completed in Canada 

alone; Chang et al. (1993) compiled a list of about 100 references published between 1985- 

1990 that investigated some aspect of climate change impacts on water resources. Such 

studies have focused on the impact of climate change on sea level, agriculture, forestry, and 

water resources. Notable impact assessments which consider water resources include: 

Parry et al. (1987), Pearman (1988), Smith and Tirpak (1989), Waggoner (1990), UK CCIRG 

(1991), and Strzepek and Smith (1994). 

Despite the diversity among the impacts considered, assessments generally have the 

same simple structure (Cohen, 199 1): 

1. Development of scenarios of global warming for the study area. 

2. Development of an impact model for the activity (water resources, etc.) in 

question. 

3. Application of scenarios to the impact model. 

While much attention has been paid to the second step, less attention has been given to the 

first and third steps, and no attention has been given to feed-backs. 

Regarding the development of scenarios, a wide variety of climate scenarios have 

been used, but most fall into four principle categories: 

1. GCM based scenarios. This approach includes some variety but usually includes 

applying GCM derived adjustments to base climate values (see, for example, 

Smith and Tirpak, 1989, or Strzepek and Smith, 1994). 



2. Hypothetical scenarios. This approach includes enormous flexibility and is often 

in the framework of a sensitivity analysis. For the purposes of forecasting 

runoff under climate change, it usually involves the application of uniform 

increases in temperature and precipitation. 

3. Historically based scenarios. Chang et al. (1993) describe this approach as "close 

analyses of past experiences under unusual climate regimes or under 

heightened competition for increasingly scarce water resources." This 

approach employs data from historically "warm" periods under the assumption 

that greenhouse gas induced climate change will affect hydroclimatic 

processes in a similar fashion as "natural" (solar variations, volcanoes, etc., see 

Robock et al., 1993) climate variability. 

4. Analog based scenarios. This approach assumes that the changed climate of one 

region might be similar in nature to the current or historical climate of another 

region (Chen and Parry, 1987). 

Each of these approaches has their strengths and weaknesses (see Carter et al., 1992). Chang 

et al. (1993) give the following plot (Figure 1) showing the distribution between these 

methods of scenario development. 

1 Climate Change Scenario Use I 

Hydrology Management Use 
Research Subject 

0 Hypothetical 
Historical 

P Analogue 
0 Other 

Figure 1. The use by type of climate change scenarios among hydrologic, management, and 

use studies (from Chang et al., 1993). 

Despite the increasing number of impact assessments, the diverse methods of climate 

change scenarios make comparison of assessments difficult (Cohen, 1991). Cohen notes that 

even when two assessments use the same scenarios, the development of these scenarios may 

cause differences in the results. 

Chen and Parry (1987) also express concern over the uncertainty created through the 

development of climate change scenarios. They consider GCM and hypothetical approaches 



as useful, and call the analog approach "helpful for conveying information at a policy level." 

However, they clearly cite the need to close the gap between large scale GCM output and 

smaller scale impact models (hydrologic models, for example). The grid size of commonly 

used GCM's (at least those used in the early 1990's) can be as large as 5" latitude by 10" 

longitude, which translates to an approximate area of 500,000 km2 in equatorial regions. 

However, hydrologic processes take place on a much smaller scale. Interception, 

evaporation, infiltration, storage, and response time all depend on physical properties which 

can vary greatly even within a 1000 km2 catchment (which could be considered a large 

catchment in hydrologic terms). 

In addition to the question of scale, Robock et al. (1993) cites the poor ability of 

GCM's to match current climates in some locations. They conclude that 2xC02 results 

cannot be trusted and criticize the reliance on GCM results for climate change scenarios. The 

authors recommend first considering the ability of the GCM's to match historical data, and 

then (if they match well) using GCM's to identify general trends in the climate parameters. 

With this knowledge (and location specific information), they suggest development of 

hypothetical1GCM hybrid scenarios. 

While this paper will not attempt to address this wide variety of issues, it will 

consider one aspect of climate scenario development. Strzepek and Smith (1994) and Smith 

and Tirpak (1989) both apply the difference between 2xC02 and 1xC02 GCM results (for 

precipitation and temperature) to historical (or base) data. Other studies which employ a 

hypothetical scenario often apply uniform increases to historical climatic data. Even 

Robock's hybrid approach requires the adjustment of base climatic data (Robock et al., 1993). 

This paper considers four questions related to the selection of a base dataset and its impact on 

the assessment of runoff under climate change. 

1. The paper considers the implications of utilizing mean monthly hydroclimatic data in a 

water balance approach. Can a single long-term "mean year" be utilized to gage the 

magnitude of changes in runoff for policy oriented impact assessment? 

2. The paper investigates the impact of hydroclimatic record length. How sensitive is a 

climate change impact assessment to the length of base hydroclimatic data records? 

3. The paper looks at the significance of increasing the density of climatic data stations. 

Under the circumstances of spars climatic data, how much information is gained by the 

addition of new climatic stations? 

4. Finally, the paper briefly discusses the utilization of gridded base data. 

The paper is oriented towards the use of a hydrologic model in policy related impact 

assessment of climate change on water resources. Within such a framework (in comparison 

to a pure hydrologic study), there is greater uncertainty in the future conditions, but there is 

also less detail required in the results. Specifically, the hydrologic model is used to 

determine the mean volume of water annually supplied by the Blue Nile River. 



2. The Blue Nile River Basin 

2.1 Characteristics of the basin 

The Blue Nile Basin is situated in northwestern Ethiopia and eastern Sudan at a latitude 

ranging from 9" to 12' North (Figure 2). The total area of the Blue Nile basin is 

approximately 325,000 km2. The upper part of the basin lies in the Ethiopian Plateau, a 

hillylmountainous region with grass and scattered trees. The lower part of is situated on the 

Sudan Plain. This is a flat region mostly covered with Savannah forest (Shahin, 1985). 

Figure 2. The Nile River and Blue Nile Basin in northeastern Africa. 

The climate of the Blue Nile Basin has been classified as "highlands" and "semi-arid" 

(Abourgila, 1992, who cites Griffiths, 1972). The Highlands classification indicates that the 

climate is strongly affected by elevation. Semi-arid implies that the region has less than 400 

mmlyear. It should be noticed that the Blue Nile receives most of its precipitation in the 

Ethiopian Highlands and very little on the Sudan Plains (especially in winter). 

The climate of the Blue Nile is quite distinct from the climate of the White Nile. In 

fact, virtually no correlation exists between annual precipitation in Uganda and Ethiopia 

(Hulme, 1990). The Blue Nile's climate shows great sensitivity to El NinoISouthern 

Oscillation (ENSO) events. El Nino events decrease precipitation over the Blue Nile, and 



anti El Nino events increase precipitation. Hulme (1990) writes, "The relationship between 

ENS0 events and Nile Basin precipitations suggests that between 10 and 40 percent of 

interannual precipitation variability may be accounted for in this way." 

The Blue Nile forms an especially interesting basin from a hydroclimatic perspective. 

With the mouth below 400 meters and springs as high as 2,900 meters, the Blue Basin has an 

extreme elevation distribution. In addition, the elevation range can be clearly divided into 

two zones (see Figure 3). The low range of elevations (below 600 meters) corresponds to the 

extremely flat Sudan Plain and accounts for about 38% of the basin; the higher, more-diverse 

elevation values correspond to the mountainous Ethiopian Plateau. 

Histogram of Blue Nile Basin Elevations 
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Figure 3. Histogram showing the distribution of elevations in the Blue Nile Basin. 

This elevation distribution implies several problems in data collection and 

aggregation. Mainly, one cannot accurately assume that the basin is homogeneous. The 

climate, topography, and vegetation will greatly vary from the lower to the upper regions. 

Additionally, in the upper region, station locations may or may not be indicative for the local 

region. For example, a data point in a gorge clearly will not give accurate information about 

the temperature or precipitation in the hills. Consequently, the basin is expected to be 

sensitive to the density and location of data points. Plus, the diversity of elevation implies 

diverse climatological readings. This fact indicates a possible sensitivity to data aggregation 

technique. 

The source of the Blue Nile River is a series of small tributaries into Lake Tana (1800 

meters above sea level). From here, the river drops into a gorge cut deeply into the Ethiopian 

Plateau. Eventually, the Blue Nile drops to the Sudan Plain where it joins the White Nile at 



Khartoum (less than 400 meters above sea level). There are two important tributaries of the 

Blue Nile--the Dinder and the Rahad. Both of these rivers are perennial and join the Blue 

below Roseires on the Sudan Plain. The Dinder has a catchment of about 16,000 km2 and an 

annual yield of approximately 3 billion m3 (Shahin, 1985). The Rahad has a smaller 

catchment of 8,200 krn2 and a average yearly yield of about 1.1 billion cubic meters (Shahin, 

1985). 

For the period 1912-1970, the Blue Nile had an average annual yield of 53.0 billion 

m3 (about 1,680 m3/s). Figure 4 compares the Blue Nile mean monthly runoff with the 

monthly runoffs from the White Nile and the Atbara River. Approximately 70% of the Blue 

Nile's flow occurs during the months of August, September, and October. The flow of the 

Blue Nile is heavily laden with sediment due in part to recent draughts in the Ethiopian 

highlands (see Smith and Al-Rawahy, 1990). 

Nile River Runoff 
25 

Month 

Figure 4. Mean monthly runoffs for the major Nile Tributaries: the Blue Nile, the White 

Nile, and the Atbara River. 

The Blue Nile is perhaps the most important tributary of the Nile River, providing 

approximately 60% of the volume of water that reaches the Aswan Dam (Strzepek and Smith, 

1994). Due to its sensitivity to climate (see above or Gleick, 1991), the effects of climate 

change on the Blue Nile will have a significant influence on the effects of climate change on 

the Nile flow entering Lake Nassar (formed by the Aswan High Dam). 

Moreover, the importance of the Nile River to Northeast Africa is obvious. 

Approximately 25% of Egypt's electrical generation, 40% of its employment, and 20% of its 

GDP are directly related to the Nile (Strzepek and Smith, 1994). The Nile water allocation 

agreement allows Egypt and Sudan to withdraw up to 48x109 m3 and 14.5~109 m3, 

respectively. Although the other seven riparian nations are not party to the agreement, their 



interest in utilizing Nile water will almost certainly increase as they develop (see Smith and 

Al-Rawahy, 1990, and Gleick, 199 1). 

Despite such the political and economic importance (and the basin's expected 

sensitivity to climate), little hydroclimatic data exists for the Blue Nile Basin. After several 

thorough searches at the Egyptian Ministry of Public Works and Water Resources, it appears 

that no significantly long series of flow data exist for Blue Nile or its tributaries anywhere in 

Ethiopia. In addition, available climatological data is also extremely sparse for such a large 

basin: only twelve climatic data stations were found near the Blue Nile Basin (see Chapter 4 

for a more detailed description of both the hydrologic and climatic data sources). 

Consequently, the sensitivity to data inputs of any investigation of the Blue Nile Basin must 

be examined. 

2.2 Previous studies of the Blue Nile under climate change 

Several studies have considered the implications of Climate Change for the Blue Nile, as a 

part of a broader study of the Nile River. Gleick (1991) uses a simple annual water balance 

model (with a GFDL based scenario) to determine the Nile's sensitivity to climatic change. 

For the combined Blue Nile and Atbara region, he shows a 50% decrease in runoff under a 

20% decrease in precipitation. 

From his analysis of historical analogues and output from several GCM's, Hulme 

(1990) suggests that the Blue Nile will experience some climatic forcing due to the 

greenhouse effect. From a composite scenario created from five GCM's, he shows winter 

temperatures in the Nile increasing between 3 and 4" C, and summer increases between 2 and 

3" C. Regarding precipitation, he could find little agreement between the GCM's. By 
treating leading GCM results as samples of a probabilistic distribution, he determines a 0.5 

probability of decreasing precipitation. He did find "a hint" that summer precipitation in the 

Blue Nile would decrease. He then translates these results into a qualitative assessment that 

Blue Nile runoff may decrease under climate change (and cites great uncertainty). 

Abourgila (1992) presents a water balance model (similar to the one used in this 

study) for the assessment of the impact of climate change on the Nile Basin. Although the 

model is designed for use with GCM output, he does not present results for any climate 

change scenarios. 

Miller and Russell (1992) use the GISS GCM grid cell runoffs to determine annual 

river runoff for 33 of the world's largest basins (and monthly runoff for several rivers--not the 

Nile). Although their modeled runoff compares well with observations in some cases, it 

does not match well for rivers in dry regions like the Nile. They present a 13% decrease in 

Nile runoff but do not distinguish between the Blue and White Nile Basins. 



3. Hydrologic Modeling 

The objective of a hydrologic model is to transfer climatic characteristics into the water 

balance of the watershed. To this end, there have been numerous efforts to describe the 

processes from the very simple annual water balance to the most sophisticated description of 

basin dynamics using differential equations describing mass and energy balance at a very 

disaggregated level. Todini (Todini, 1988) broadly categorizes the levels of complexity of 

watershed rainfall-runoff models by ranking them in increasing order of a prior knowledge: 

(1) purely stochastic, (2) lumped integral, (3) distributed integral, and (4) distributed 

differential. 

In brief, the stochastic approach uses only statistical methods, with no physical basis 

for computing basin response. The lumped integral approach models the catchment as a 

whole and usually attempts to minimize the number of parameters needed to describe the 

main physical processes. The lumped integral model is commonly called the "bucket" model. 

Because of its simplistic representation of the watershed, the parameters of a lumped model 

tend to lose some of their physical meaning. Data requirements are somewhat small and 

might include: historic precipitation, runoff, estimates of potential evapotranspiration and 

basin area. The model used in this study falls within the broad context of the lumped integral 

model (a comparison of different runoff models for use in climate change impact assessment 

is given in a companion paper, Yates and Strzepek, 1994a). The third model type is the 

distributed integral model and is pertinent because many climate change studies have used 

this type of model (Nkmec and Schaake, 1982, Lettenmaier and Gan, 1988, Nash and Gleick, 

1993). Such models give a more sophisticated representation of physical processes and 

attempt to maintain physical meaning to model parameters. Data requirements are large and 

can include: basin concentration times, routing intervals, percent impervious area, length of 

overland flow, watershed slopes, infiltration rates, storage capacities, potential 

evapotranspiration, etc. These models were primarily developed out of the necessity to 

analyze more event based phenomena such as flood forecasting. The Stanford, Sacramento, 

and NWSFRS models fall within this catagory of models. The final model type is the 

distributed differential model which describes basin response using differential equations in 

space and time and expresses both mass and momentum balances. This model type, for now, 

is practically confined to the laboratory due to its large data and computational requirements. 

3.1 IIASA's Water Balance Model (WatBal ) 

The theoretical basis of this study's model was developed by Kaczmarek and Krasuski 

(1991) at the International Institute for Applied Systems Analysis and the Institute of 



Geophysics in Warsaw, Poland. The uniqueness of this lumped conceptual model to 

represent water balance stems from the use of continuous functions of relative storage to 

represent surface outflow, sub-surface outflow, and evapotranspiration. The groundwater 

discharge element of the water balance has been referred to as sub-surface flow since it is a 

conceptualization of groundwater discharge using a single bucket. In this approach, the mass 

balance is written as a differential equation, and storage is lumped in a single mass balance 

(see Figure 5). All components of discharge and infiltration are dependent upon the state 

variable, relative storage, with the exception of base flow which is given as a constant in the 

mass balance equation (Equation 1). The model contains only three parameters E, a, and 

Smax which are related to surface runoff, subsurface runoff, and maximum catchment water- 

holding capacity, respectively. Because of the model's differential approach, varying time 

steps can be used depending on data availability and basin characteristics. For larger basins 

with longer times to concentration, longer time steps are recommended (e.g., one month). 

This approach was implemented using the Visual Basic programming language within the 

Excel 5.0 spreadsheet environment, and the resulting software has been termed "WatBal." 

.- 

Soil Moisture Zone 

subsurface 

Baseflow 

Figure 5. Conceptualization of storage and water balance in the WatBal model. 

The continuity equation describing the mass balance is written as: 

where, 



ef/ = Effective Preciptation (lengthl time) 

R, = Surface runoff (lengthl time) 
R,, = Sub - Surface runoff (length I time) 
Ev = Evaporation (lengthl time) 
R, = baseflow (length I time) 

S,, = Maximum storage capacity (length) 
z = relative storage (0 I z 51) 

The continuous functional forms of each term in Equation 1 are given below. 

Evapotranspiration - Ev 
Evapotranspiration is a function of potential evapotranspiration (PET) and the relative 

catchment storage state. For the purpose of this study, a calibrated temperature based 

potential evapotranspiration (Thornthwaite) model was used to estimate PET (Shaw, 1982). 

A companion paper (Yates and Strzepek, 1994b) closely examines the issue of PET 

estimation for climate change impact assessments. In the literature, a number of expressions 

have been given that describe evapotranspiration as a function of the soil moisture state, a 

non-linear relationship is used here (Kaczmarek and Krasuski, 1991). 

Surface Runoff - Rs 
Surface runoff is described in terms of the storage state, z, the effective precipitation, 

Pe8, and the predefined baseflow. If the precipitation is less than the base flow, then it is 

assumed that no surface runoff occurs. 

1 0  for efl 5 R~ 

The first parameter of the model, E, is introduced here in the surface runoff term, Rs. 

Sub-surface Runoff - Rg 

Sub-surface runoff has been assumed to vary as a square of the relative storage state 

times a coefficient, a ,  where a is the second model parameter. The third and final model 



parameter is the maximum catchment holding capacity, Smax. The storage variable, z, is 

given as the relative storage state: 0 I z 5 1. Inputs to this model include: effective 

precipitation, potential evapotranspiration, and (for calibration purposes) runoff with units of 

length per time. In this study, mean monthly values have been used, although shorter or 

longer time periods could be used. 

3.2 Potential evapotranspiration 

Dooge (1992) states that any estimate of climate change impacts on water resources depends 

on the ability to relate change in actual evapotranspiration to predicted changes in 

precipitation and potential evapotranspiration. If it is necessary to predict proper changes in 

potential evapotranspiration then it is obviously important to begin with a good estimate of 

potential evapotranspiration. 

The PET model that was used in this study was based on the temperature method 

developed by Thornthwaite (Shaw, 1982). However, it was assumed that the Thornthwaite 

method did not give a good representation of the basin's "actual" potential evapotranspiration, 

so a calibration coefficient was placed in front of the Thornthwaite PET estimate. The 

calibration procedure that was used to adjusted PET was based on the notion that the long- 

term water balance of a large catchment can be simply written as Ra = Pa - Eva; annual 

runoff equals annual precipitation minus annual evaporation (Dooge, 1992). If it is assumed 

that there is no over-year storage when using long-term averages, then a simple monthly 

runoff model for a basin such as the Blue Nile can be expressed as follows. 

Then by summing up the monthly runoff values and setting them equal to the observed 
values, 

it is possible to find a coefficient, P,  that gives an estimate of the potential evapotranspiration 
value for the basin based on a given potential evapotranspiration. 



Roi = observed runoff in month i 

Ri = computed runoff in month i 

BET, = estimate of potential evapotranspiration in month i 

PETtw, = Potential evapotranspiration by Thornthwaite in month i 

Pi = Precipitation in month i 

p = calibration coefficient for Thornthwaite 

4. Data Sources 

Four data sources were utilized in this analysis. The following sources provided 

climatological (temperature and precipitation) data: the 1993 NCAR World Monthly Surface 

Climatology Database, the Africa89 database, and the IIASA database. Runoff data was 

obtained from the Egyptian Ministry for Public Works and Water Resources. 

The NCAR World Monthly Surface Climatology Database is a global climate 

database that includes 37 stations inside Sudan and Ethiopia. The record lengths vary from 

station to station but usually begin after 1900. For this study, all records after 1970 were 

disregarded to avoid the possibility that climate change influenced this historical data. The 

1993 data was obtained from the Global Ecosystems Database Version 1.0 on CD ROM 

(from the National Organization of Atmospheric Administration). 

The second data source is the 1989 Africa Climate Tape supplied by NCAR (Strzepek 

and Yates, 1994). This tape contains monthly temperature and precipitation data for the 

African continent. For Sudan and Ethiopia, it includes 39 precipitation and 26 temperature 

stations. The difference between the 1993 NCAR data and the Africa89 data is that the 

Africa89 data contains 2 additional precipitation stations and 11 less temperature stations. 

However, the key difference for modeling the Blue Nile Basin is that the 1993 NCAR data 

includes a temperature station at Lake Tana, where the Africa89 data does not. To determine 

areal climatic values for the station data, Strzepek and Yates (1994) determine mean station 

values using any available records before 1970. By employing GIs, the mean values were 

plotted in a latitudellongitude projection, and an interpolated surface was developed using 

GRASS'S inverse distance weighting technique (see Isaaks and Srivastava, 1989). 

The IIASA database is a gridded global climatological database which includes 

temperature, precipitation, and cloudiness values (Leemans and Cramer, 1991). Station data 

was gathered from a variety of sources which resulted in varying densities throughout the 

world. Stations were accepted under the criteria of a minimum observation length of five 

years during 1931-1960. Leemans and Cramer gridded the data using their latitudellongitude 

locations on a Cartesian plane (i.e., a sinusoidal projection). They performed the 

interpolation with a triangulation technique from Green and Sibson (1978). Temperature was 



adjusted to mean sea level using an adiabatic lapse rate. Although they considered a similar 

correction for precipitation, they found that such an adjustment did not significantly improve 

the data. 

Naturalized historical Blue Nile runoff data was obtained from the Planning Studies 

and Modeling Program at the Egyptian Ministry for Public Works and Water Resources in 

199 1. This data was available at Khartoum for the entire span of the climatic data. 

5. Temporal Issues: Comparing Time Series to Long-Term Mean Values 

Most climate impact assessments which study the response of river basins to climate change 

have made use of long time series to assess the response of basin discharge to climate 

variability (Nkmec and Schaake, 1982, Lettenmaier and Gan, 1990, Gleick, 1987, Nash and 

Gleick, 1993). Of course, these studies were confined to those basins which had long records 

available. However, in many regions throughout the world, and particularly within the 

developing world, long-term climatological data is seldom available. For those regions with 

scarce data, the use of gridded data bases could prove useful in performing climate change 

impact assessments on river basins. With this in mind, one of the goals of this study was to 

test the validity of using long-term monthly mean values for impact assessment. This study 

made use of mean monthly values of precipitation, potential evapotranspiration, and runoff to 

assess potential climate change impacts on the Blue Nile Basin. It was proposed that 

monthly mean values would give comparable estimates of basin response to climate change 

as the results derived from a monthly time series. 

In order to test this hypothesis, an experiment was performed using a 26 year record, 

from 1945-1970 (a portion of the T58 scenario below, see Section 6.1). The first 13 years 

(1945-1957) were used for calibration and the second 13 years (1958-1970) for validation 

using the WatBal model. Figure 6 is the one year moving average of the modeled and 

observed discharge as well as precipitation for the 26 year record on a monthly basis (both 

the calibration and validation series). The moving average was chosen to remove seasonality, 

making it easier to observe the difference between modeled and observed discharges. 

Generally, the model tends to over estimate the sensitivity of the basin to precipitation 

fluctuations primarily caused by the calibration objective of minizing the residual error. This 

objective causes the model to choose model parameters which calibrate closely to the mean 

year, with a subsequent over estimation of low and high flow years (Figures 6 and 7). For 

example in the early portion of the record (1945-1948) the historic precipitation is 

significantly above the mean without a corresponding increase in discharge and during a dry 

period (1960-1962) the model over predicts the decrease in discharge (Figure 6). Because 

the model is only using precipitation and temperature data to derive discharge, the water 



balance model will not be able to predict this type of discharge response, as there appear to be 

additional basin dynamics that are not explainable with only the precipitation, temperature 

and discharge data. Table 1 gives the correlation coefficient and the standard monthly error 

value for the modeled time series. The standard error measures the amount of error in the 

model's prediction of discharge versus the observed discharge. From this table, it is apparent 

that the calibration~validation procedure has validated the use of this water balance model for 

this basin. The correlation and error values did not change dramatically between the two 

portions of the time series, which include several high and low flow years in both the 

calibration and validation portions of the record. 

Table 1. Calibration 

monthly flows) 

and validation statistics (comparing observed 

for the ~er iod 1945 to 1970. 

and calculated mean 

One Year Moving Average: 
Observed & Modeled Discharge and Precipitation 

Figure 6. One year moving average of observed discharge, modeled discharge, and 

$ .L 

precipitation for the period 1945 to 1970. 

- Observed - Model ...-.--.- Precip 

Figure 7 shows a comparison between the model results when run on the time series 

and on the mean This figure displays: mean monthly discharges computed from the 

observed time series (labeled "Observed"), calculated monthly discharges using "mean year" 

values in the model (labeled "Mean"), and the means of the calculated monthly discharges 

using time series values in the model (labeled "Time Series"). Clearly, there is a great 
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similarity between the Mean and the Time Series discharges, which leads to an interesting 

conclusion. When using the actual time series within the water balance model, it appears that 

WatBal chooses calibration parameters which calibrate closely to the mean year. 

This conclusion might bring into question how the model behaves during extreme 

events (i.e., periods of high and low flow). Figure 6 shows that during portions of the 1945- 

1970 record, the model tends to exaggerate some of the extreme events that were recorded 

during that period. For example, the period from 1945 to 1948 appears to be a rather wet 

period with regards to the precipitation record, yet the model tends to over-predict the 

discharge response of the basin. Similarly, during a dry period (1951 to 1954), the model 

tends to under-predict the flows (Figure 6). This observation could be important when 

looking at the impacts of climate change. Is there any reliability in the model to estimate 

plausible basin response during more extreme wet and dry periods, or is the model limited to 

estimating impacts only around the monthly mean year? 

Comparison of Mean Runoff Values: 
Observed, Model using Monthly Means, Model 

1.80 -1 
using Time Series 

I 
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Figure 7. Comparison of mean monthly discharges: observed, modeled using the mean 

values, and modeled using the time series. 

Table 2 is a summary of the climate change scenarios that were implemented using 

both the time series and the long-term monthly mean values. When comparing the results for 

the means and the time series, it is apparent that the mean is a good estimate of climate 

change impact relative to the time series. No scenario gave a difference greater than 2%, 

which is currently much less than the uncertainty in the estimation climate change or its 



potential impacts. This procedure thus validated the use of the mean values to estimate the 

impact of climate change on the Blue Nile Basin. 

Table 2. Comparison of climate change impacts using mean values and time series (Scenario 

6. Temporal Issues: Length of Station Records 

T58) in percent change 

In addition to the uncertainty regarding the influence of future greenhouse forced climate 

change, there is considerable limitations in the availability of historical climatic and 

hydrological information. As already noted, this statement is particularly serious in (although 

not exclusive to) the developing world. However, historical information is required to 

establish a climatic baseline and to calibrate and validate hydrologic impact models. 

Consequently, the impact community continuously wrestles with the question: how sensitive 

is the impact assessment to the length of record available for the base climatic stations? This 

chapter studies this issue as it relates to the assessment of climate change impacts on Blue 

Nile runoff. 

Runoff (A%) 

6.1 Development of scenarios 

Change in Precipitation 

Two scenarios were developed which give different record lengths in their representation of 

the basin. The first scenario, called Scenario T8 can be considered the base (or worst case) 

were the span of recorded data is extremely limited. The other scenario, Scenario T58 

represents the ideal case where an extended period of hydrologic and climatic data is 

available. 

Both of these scenarios were realized by using the data from the 1993 NCAR World 

Monthly Surface Climatology Database (see above), and they both employ the same 3 data 

stations: Khartoum, Kosti, and Addis Ababa. The locations of these stations in comparison 

with the basin boundaries are shown in Figure 18 (with the discussion of spatial 

representation below). Scenario T8 utilizes a period of 8 years, spanning 1953 to 1960. 












































