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A Framework for Analysis of the Uncertainty of Socioeconomic Growth and Climate 
Change on the Risk of Water Stress: a Case Study in Asia 

Charles Fant*†, C. Adam Schlosser*, Xiang Gao*, Kenneth Strzepek* and John Reilly* 

Abstract  

The sustainability of future water resources is of paramount importance and is affected by many 
factors, including population, wealth and climate. Inherent in how these factors change in the future 
is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—
internally consistent across economics, emissions, climate, and population—to develop a risk 
portfolio of water stress over a large portion of Asia that includes China, India, and Mainland 
Southeast Asia. We isolate the effects of socioeconomic growth from the effects of climate change in 
order to identify the primary drivers of stress on water resources. We find that water needs related to 
socioeconomic changes, which are currently small, are likely to increase considerably in the future, 
often overshadowing the effect of climate change on levels of water stress. As a result, there is a high 
risk of severe water stress in densely populated watersheds by 2050, compared to recent history. If 
socio-economic growth is unconstrained by global actions to limit greenhouse gas concentrations, 
water-stressed populations may increase from about 800 million to 1.7 billion in this region. 
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1. INTRODUCTION  

There is rising concern about the impact of climate change and socioeconomic growth on the 
future of our water resources (e.g., Jiménez Cisneros et al., 2014; Georgakakos, 2014). The 
global climate system and population as well as the local and global economy determine regional 
and local water supplies and demands—and these forces can result in complex interactions that 
require deeper understanding in order to provide actionable information to stakeholders for 
strategic planning in a changing and growing world. An emerging need is evident for modeling 
tools to capture these complex linkages—especially global-to-local hydro-climatic relationships, 
managed water systems, and population and economic growth.  

Previous literature has included many assessments of the impacts of climatic changes and 
socioeconomic drivers on water supply and demand (Alcamo et al., 2007, 2010; Arnell et al., 
2011; Shen et al., 2008; Vörösmarty et al., 2000; among others). These studies have focused on a 
limited number of future scenarios, providing valuable insights on the potential changes that may 
arise from a few plausible futures; however, there is no ability to assess where these courses of 
events and the subsequent water impacts may lie in terms of a distribution of outcomes—i.e. a 
risk-based lens to the analyses. Given the complexity of the system, critical questions remain 
such as:  

• For any scenario of future climate, population and economy, can we identify a 
central tendency as well as the “extreme” outliers (i.e. 5th and 95th percentile)?  

• Does any scenario result cluster around a central tendency or mode, and therefore 
indicate that the outcome is more robust?  

Without quantified likelihoods of future outcomes, it is difficult to determine which scenarios 
should be seriously considered when planning new investments. Here we develop and test an 
approach to provide regional projections of changes in water supply and demand, and of the 
potential for changes in water stress.  

 We draw on probabilistic projections of global population, economic growth, emissions and 
climate developed using an Integrated Global Systems Model (IGSM) developed at MIT 
(Sokolov, et al., 2009; Webster et al., 2012). Advantages of this approach are (1) likelihoods are 
explicitly quantified; (2) scenarios are self-consistent, in that a climate scenario drawn from these 
projections was produced from an emissions scenario driven by an associated population and 
economic growth scenario (recoverable for our projection of water demands and resource 
uncertainty); (3) underlying uncertainties in drivers of both economic and earth system response 
are sampled; (4) cascading uncertainties are properly addressed, while additional uncertain 
variables increase uncertainty in final outcomes, unless the underlying parametric uncertainties 
are highly correlated (in which case they have a strong tendency to offset one another).  

To test the approach we focus on a portion of Asia that includes China, India and Mainland 
Southeast Asia (Figure 1). This region covers emerging economies constituting almost half of 
today’s global population, as well as diverse climates that create varied water resource issues 
involving both surface and ground water. Previous studies in this region have found moderate 
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effects of climate change, some positive and some negative, but raise serious concerns about 
socioeconomic effects on water-intensive economic sectors (Wei et al. 2009; Piao et al., 2010; 
O’Brien et al., 2004; Kumar et al. 2006). These regional studies, like the previously mentioned 
global studies, are constrained to a limited number of climatic and socioeconomic scenarios 
provided by Climate Model Intercomparison Projects (CMIPs) and the Intergovernmental Panel 
on Climate Change (IPCC). 

 
Figure 1. Southeast Asia study region. Black contours delineate Assessment Sub Regions (ASRs) defined for the 

Water Resource System (WRS) within the IGSM-WRS framework. The color shading indicates the economic 
regions that are resolved in the Emissions Prediction and Policy Analysis (EPPA) model.  

Our method, in brief, is to apply a Water Resource System (WRS) model developed to work 
with the IGSM framework (Strzepek et al. 2013). We use 400-member ensembles of climate 
forecasts previously developed with the IGSM (Sokolov, et al., 2009; Webster et al., 2012), 
complemented with the pattern-scaling approach of Schlosser et al. (2012) to develop a new 
6,800-member ensemble of climate change projections, including variations in the regional 
pattern of climate change as represented by major General Circulation Models (GCMs). The 
climate projections drive changes in surface water supply through changes in runoff and 
irrigation demand, and the IGSM economic ensemble projections provide the necessary 
parameters to estimate changes in water demands for industry and municipal use. A water 
management module within the WRS allocates, stores and releases water over each year, 
regulated by a management decision scheme that sets priorities among uses. This allows a 
distribution of water stress, indicating risks for river basins and sub-basins within our target 
region of Asia. 
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In Section 2 of this paper, the models and methods are described; in Section 3, the changes in 
water supply and demand are shown in detail, as well as the resulting water stress risk portfolios; 
and in Section 4, the main conclusions from this work are presented. 

2. MODELS AND METHODS 

2.1 The IGSM-WRS and Study Region  

Our analysis focuses on the impact of socioeconomic growth and climate changes on the 
future availability and management of water resources resolved over large watersheds—
Assessment Study Regions (ASRs)—across South, Southeast, and East Asia (Figure 1). The 
basic structure of the WRS as applied here is illustrated in Figure 2, with greater detail provided 
in Strzepek et al. (2013).  

The WRS is driven by economic and climatic projections from the MIT Integrated Global 
System Model (IGSM) described in Sokolov et al. (2005). Economic projections are driven by 
the MIT Economic Projection and Policy Analysis (EPPA) model, a regionally resolved general 
equilibrium model of world economies (described in Paltsev et al. (2005)), which provides 
inputs for econometrically estimated relationships of industrial and municipal water requirements 
based on changes in population and gross domestic product (GDP) (Strzepek, et al., 2013).  

The same EPPA scenarios provide greenhouse gas and other pollutant emissions to the MIT 
Earth System Model (MESM), which produces latitudinally-resolved climate projections; the 
IGSM sub-model of atmospheric dynamics and chemistry is 2-dimensional (altitude and latitude) 
and is coupled to a mixed layer ocean component. The zonal resolution of the MESM makes it 
feasible to produce 400-member ensembles necessary to reasonably resolve the distribution of 
future climate outcomes (Webster et al., 2012). MESM outputs are downscaled to 2° latitude by 
2.5° longitude using a pattern-scaling technique (Schlosser et al., 2012) based on archived 
IPCC4 Climate model simulations. These downscaled precipitation and temperature results are 
used to drive the Community Land Model (CLM) version 3.5 (Oleson et al., 2008) to produce 
the runoff for each ASR. The CLM, which explicitly represents soil thermal and hydrologic 
processes, is also implemented within the IGSM as its land surface scheme. The simulated runoff 
is further refined through a calibration procedure (Strzepek et al., 2013) to ensure that projected 
flows in each basin are a realistic representation of natural flow conditions.  

Downscaled precipitation and temperature are also input to the CliCrop component of the 
WRS, a daily crop water deficit model which projects irrigation requirement (Fant et al., 2012). 
The multiple water demands are inputs to the Water System Management (WSM) component of 
the WRS that allocates water for consumption and assesses the adequacy of water supplies in 
light of changing water availability at the ASR level. We use previously published and archived 
ensemble IGSM runs that consider underlying uncertainty in both climatic (climate sensitivity, 
ocean uptake and aerosol effects) and economic parameters (labor and energy productivity 
growth, population, resource availability, technology costs, pollution emissions and substitution 
elasticities) as described in Webster et al. (2012). 
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Figure 2. Schematic of connections between components of the IGSM framework and the WRS. Within the IGSM, the 

EPPA model produces economic projections, calculating population and GDP for each ASR. These determine 
municipal and industrial demands for water. Climate results from MESM are projected longitudinally via pattern 
scaling with archived GCM data. CLM determines runoff, and CliCrop calculates irrigation demands. Water 
demands and surface-water supply are fed into the WSM to optimize the routing of water across all ASRs. The 
resultant routing is then analyzed via water stress indicators. 

For this study, the WRS is configured to represent 54 ASRs over a large region of Asia (see 
Figure 1). The ASRs are defined by major river basins and parts of river basins contained within 
a country.2 For each ASR, available reservoirs are aggregated into a single storage unit that 
receives water from runoff within the ASR and remaining flows of upstream ASRs. The stored 
water is allocated to serve human water sector requirements and a required environmental flow. 
Non-irrigation requirements (for municipal, industrial, and livestock uses) are driven by 
socioeconomic factors on the assumption they are not significantly influenced by climate; 
irrigation requirements, on the other hand, are determined by environmental conditions, 
calculated by CliCrop (Fant et al., 2012).  

Based on recent evidence over the past decade, global growth in irrigated land area has 
slowed considerably (e.g. Siebert et al., 2013; Thenkabail et al., 2008; and Siebert et al., 2005) 
even though global food production has steadily increased (e.g. FAO, 2013). This indicates that 
rising global food demand is being met by increased rainfed agriculture and intensification of 
existing irrigated land. Given the complexity of interactive socio-economic drivers and 
environmental pressures, as well as global and national governance that will affect future 
decisions regarding irrigation expansion (i.e. new dams and reservoirs, e.g. WCOD, 2000), the 
irrigated area is held constant in these experimental simulations (equal to current estimates from 
FAO and IFPRI—see Rosegrant et al., 2008); we focus on whether there is adequate water to 
meet needs associated with changes in ASR-scale socio-economic activity and climate.  
                                                
2 A comprehensive ASR listing is provided in Strzepek et al. (2013) as well as the basin-level processes of the 

natural and managed water system that are represented by the model. 
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2.2 Ensemble Simulations and Scenarios 

Our method is to construct numerous ensembles that incorporate the uncertainty in future 
hydrology and water resources, as affected by uncertainty in climate and economic drivers of 
water use. We gauge the changes simulated in these ensembles with respect to a single baseline 
scenario. The baseline scenario represents a 50-year IGSM run with year-2000 water needs from 
agriculture, industry, and municipalities and a mean year-2000 climate with 50 years of recent 
historical inter-annual climate variability. We compare resulting changes in supply, demand, or 
water stress with the baseline result to isolate the effect of the long-term mean change in climate. 
For baseline domestic and industrial water requirements, we use data from Rosegrant et al. 
(2008) that are also used in the global IGSM-WRS, described in detail in Strzepek et al. (2013).  

Our projections are designed to distinguish effects on water use of economic and population 
growth separate from that of future climate change. We create three ensembles of 50-year 
simulations (2000–2050) of water resource supply and use. In the first, we utilize forecasts of the 
socioeconomic drivers of water demand to create an ensemble as if only the economy changed (no 
climate change), which we hereafter refer to as the Just Growth ensemble. In the second, we utilize 
the same economic scenarios and associated emissions, simulating their effect on climate to create 
another ensemble as if only the climate changed, which we hereafter label the Just Climate 
ensemble. Finally, we develop a large ensemble including both climate change and economic 
growth, which we hereafter label the Climate and Growth ensemble. These ensembles allow us to 
separately identify the relative importance of climate change and growth, study the combined 
effect of these changes, and compare them against a baseline ensemble (as if neither climate nor 
socio-economic drivers changed). The Just Growth, Just Climate, and Climate and Growth 
ensembles are all generated on the assumption that there are no policy constraints on greenhouse 
gas emissions. Analyzing mitigation effects in this region will be handled in a future study. 

2.2.1 Baseline Scenario Data 
A long-term, globally consistent dataset of near-surface meteorological variables—the Global 

Meteorological Forcing Dataset (GMFD) (Sheffield et al., 2006)—provides the baseline climate 
in this study. The data is constructed by combining a suite of global observation-based datasets 
with the National Centers for Environmental Prediction-National Center for Atmospheric 
Research (NCEP-NCAR) reanalysis. The GMFD data spans the years 1948 to 2008 at the 1° 
spatial and 3-hourly temporal resolution.  

To detrend the 3-hourly forcing, the data is aggregated monthly, then regridded to a 2.5° × 2° 
resolution. The linear trend is estimated for each of twelve months at each grid over our study 
region based on the 50-year (1951–2000) monthly time series. Six near-surface meteorological 
variables have been processed, including 2 m air temperature, total precipitation, shortwave and 
longwave radiation, wind speed, and specific humidity. To bridge the potential gaps between the 
detrended baseline climate in the last year and the derived future climate (discussed in the 
following section) at the beginning of the future simulations, for each of the twelve months, we 
add the fitted trend in the last year (Year 2000) to the monthly residual across the 50-year, then 
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calculate the ratio of this sum to the aggregated monthly time series. The detrended 3-hourly data 
at each grid are then obtained by scaling the original 3-hourly time series with this monthly ratio. 
Note that the same ratio is applied across each of the 3-hourly time steps within a specific month. 
The CLM is then forced with the detrended 3-hourly near-surface meteorological forcing to 
produce the baseline monthly runoff. 

2.2.2 Climate Change and Growth Scenario Data  
This study considers changes in GDP and population obtained in the unconstrained emissions 

(UCE) ensemble analyzed by Sokolov et al. (2005). The UCE policy uses the global ensemble of 
population projections described in Webster et al. (2008). To be consistent with the IGSM 
uncertainty formulation, socioeconomic projections are provided by EPPA region (Figure 2). To 
provide these population projections at the ASR scale, the EPPA regions’ rate of population 
changes are mapped to the ASR regions within each EPPA region, following the technique used 
in Strzepek et al. (2013). ASR-based population projections use the growth rates from EPPA, 
with the current populations at the ASR level developed by IPFRI (Rosegrant et al., 2008) 
(Figure 3).  

 
Figure 3. Year 2000 global distribution of population (in millions) projected onto the Assessment Sub Regions (ASRs) 

of the WRS water-management network of river basins. Black contours denote political boundaries. 

	   The MIT IGSM is designed to quantify various sources of uncertainty in climate projections. 
The fully coupled IGSM is forced from 1861 to 1990 by observed changes in greenhouse gas 
concentrations, and from 1991 to 2100 by emissions of greenhouse gas and aerosol precursors 
projected by the EPPA model (Sokolov et al., 2009). Our 400-member climate forecast ensemble 
was conducted based on different value combinations of three key climate parameters: effective 
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climate sensitivity, ocean heat uptake rate, and net aerosol forcing (Sokolov et al., 2009). The 
value of each parameter is sampled from its probability distribution obtained by comparing the 
twentieth-century simulations with observations of surface, upper-air, and deep-ocean 
temperature changes (Forest et al., 2008). The climate forecast ensemble is calculated for each of 
five emission pathways: Unconstrained Emissions (No Policy) and four greenhouse-gas 
stabilization levels (Level 1, Level 2, etc.). In this study, only the results for Unconstrained 
Emissions are presented.  

In the assessment of regional climate change impact on water resource management in 
Southeast Asia, we use a simple downscaling method, or delta method (Ramirez-Villegas and 
Jarvis, 2010), to construct a series of atmospheric forcing to conduct our ensemble simulations. 
The method is based on applying the interpolated monotonic changes in climate from the IGSM 
projections to the baseline climate, accounting for any bias (or trend) in the baseline climate 
under future climate change. This method assumes that changes in climates (anomalies) are 
mostly relevant in the IGSM projections, and that the relationships between variables in the 
baseline climate—including periodic and irregular fluctuations in variables—are likely to be 
maintained. The zonal anomalies (delta) are derived for the IGSM monthly time series of 2001 to 
2100 with respect to the 20-year (1981–2000) climatology for each meteorological variable and 
each of the 400 climate forecast scenarios. There exist some biases in the IGSM-simulated zonal 
precipitation of potential climate change, and we correct such biases based on the monthly zonal 
precipitation climatology of three periods (2011–2040, 2041–2070, 2071–2100) from the 
SRESA2 simulation of the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment 
Report (AR4) (Meehl et al., 2007). The monthly zonal precipitation climatology from each of the 
17 GCMs in the SRESA2 scenario has been analyzed to examine the impact of model structure 
in bias correction.  

To account for the uncertainty in regional climate change, a downscaling technique (Schlosser 
et al., 2012) is employed to expand the IGSM monthly zonal anomalies of precipitation and 2 m 
air temperature of each of 400 climate forecast scenarios across longitude at 2.5° × 2° by 
applying longitudinally-resolved patterns, from observations and from climate model projections 
archived for the IPCC AR4. The observed patterns for precipitation and temperature are derived 
from the 31-year (1979–2009) monthly GPCP v2.1 data set (Huffman et al., 2009) and the 
20-year (1981–2000) monthly Princeton data set, respectively. The pattern shifts in response to 
human-forced change are derived based on the same 17 GCM simulations from the IPCC AR4 
SRESA2 emission scenario. The resulting meta-ensemble (400 × 17 = 6,800 members) of the 
2.5° × 2° IGSM monthly anomalies (precipitation and temperature) is used for the Gaussian 
quadrature procedure presented later.  

The IGSM monthly zonal anomalies of each climate forecast scenario are further interpolated 
using a polynomial of degree 3, with a least-squares fit, to produce a smooth time series 
(removing rapid changes in gradient in the vicinity of the data points). This is performed for all 
the near-surface meteorological variables, except that the zonal precipitation anomalies go 
through the additional bias correction (as described before) prior to the interpolation procedure. 
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A similar downscaling technique (Schlosser et al., 2012) is used to map the interpolated IGSM 
monthly climate across longitude. These anomalies are then added to the detrended 3-hourly 
baseline climate to construct the future 3-hourly atmospheric forcing (so called “delta method”), 
which is used to drive the CLM offline from 2001 to 2050 to simulate the runoff for the subset of 
6,800 meta-ensemble members.  

The combined effect of growth and climate are then explored in combination through WSM. 
The IGSM-WRS is integrated to 2050 for all cases. The following analyses will focus on the 
ability of the ASRs to meet water demands (Strzepek et al., 2013), and the relative stress that 
these demands place on renewable surface water and water available within the managed system. 

2.3 Ensemble Thinning via Gaussian Quadrature Procedure  

Due to computational limitations, running the full ensemble of 6,800 members is infeasible. 
For this reason, we use a Gaussian Quadrature approach, as described in Arndt et al. (2014), to 
produce a subset and respective weights that represent the full ensemble. The Gaussian 
Quadrature approach identifies a set of indices for the ensemble members, and then identifies a 
subsample of simulations for which the values of the identified indices are distributed similarly 
to that of the full ensemble. Thus, we select a series of indices—or summary statistics—that 
characterize relevant differences among the ensemble members. The number of statistics used 
determines the size of the resulting subset (i.e., more statistics results in a larger subset) related 
to the number of equations to solve in order to obtain the Gaussian Quadrature (originally proven 
in Tchakaloff (1957)), with more detail for the specific application in Arndt, et al. (2014).  

Two key impacts on water resources are runoff (an indicator of water supply) and irrigation 
demand. These impacts integrate many aspects of different climate scenarios including 
precipitation and Potential Evapotranspiration (PET). Willmott and Feddema (1992) developed 
the Climate Moisture Index (CMI), which uses the ratio of annual precipitation (P) to annual 
PET as follows:  

CMI = (P/PET) – 1 when P < PET  
CMI = 1 – (PET/P) when P >= PET 

CMI may range from +1 to -1, with wet climates showing positive CMI, and dry climates 
negative CMI. Strzepek et al. (2011) demonstrated that changes in CMI are highly correlated 
with changes in runoff and irrigation demand. Thus, CMI is a single, simple to calculate index 
that is highly correlated with major impacts of interest in this study.  

We calculated CMI for each of the 6,800 climates for 5 regions based on the Koeppen-Geyger 
climatic zones (shown in Figure 4Error! Reference source not found.) and for two 5-year time 
slices: a mean over 2028 to 2032 and a mean over 2046 to 2050. In the CMI calculation, we use 
the modified Hargreaves equation to calculate PET (Hargreaves and Allen, 2003). Since WRS 
also accounts for changes to GDP and population, we add four more indices: year 2050 GDP and 
population for both India and China. This leaves us with 14 indices total: 10 for climate (5 
regions over 2 time slices) and 4 for socioeconomics. 
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Figure 4. Regions used in the Gaussian Quadrature summary statistics with 2.5° longitude by 2.0° latitude HFD 

grids. Colored polygons denote the 5 regions used for the Gaussian Quadrature thinning, based on the 
Koeppen-Geyger Climatic Zones. Black lines are the political boundaries of China, India, and Pakistan. 

 
Figure 4. Distribution of the 14 Climate Moisture Index (CMI) statistics used in the Gaussian Quadrature thinning 

procedure across climate scenarios for the full 6,800-member ensemble. Dashed lines are the Gaussian 
Quadrature subset distributions for comparison.  

Figure 4 shows the distribution of the 14 variables for the full ensemble. In this figure, plots 
a) through e) show the CMI of the 5 regions for the two time slices. In these CMI plots, the dark 
black line marks the base CMI value. Plots f) and g) show GDP for China and India in 2050 as a 
percent change from the year-2000 value, and plots h) and i) show population for China and 
India in 2050, also as a percent change from the year-2000 value. The distributions of the 
resulting subset are shown as dashed lines. As shown, the Gaussian Quadrature procedure 
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successfully reproduces the original 6,800 member ensemble with a sub-sampled set of 551 
members. We then use this sub-sampled ensemble to perform our water resource assessment. 

2.4 Measures of Water Stress 

We use two measures of stress to understand the impacts of changes in climate and growth. The 
first measure, Unmet Water Requirement (UWR), is the percentage of the total water requirement 
that is not met by the system. UWR is the main component of the objective function in WSM and 
is a direct aggregate measure of water stress in each ASR. We calculate UWR as follows:  

UWR  =  1  −   
𝑡𝑜𝑡𝑎𝑙  𝑤𝑎𝑡𝑒𝑟  𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑡𝑜𝑡𝑎𝑙  𝑤𝑎𝑡𝑒𝑟  𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡   ×  100% 

In the global WRS model, total water requirement is an estimate of the amount of water that 
would be consumed given socio-economic factors, climate conditions, and current infrastructure, 
if water were an unlimited resource. For example, if the total water requirement—irrigation, 
industrial, and municipal—is 100 billion cubic meters (BCM) and the system can only deliver 90 
BCM, the UWR would be 10%. A UWR of 0% indicates that all crops (as well as the other water 
requirement sectors) are without water stress. The WSM module allocates domestic and industrial 
consumption requirements to be satisfied first (given sufficient water supply) and the agriculture 
sector must absorb the loss. Since irrigation is by far the highest requirement for water, it is 
extremely rare that domestic and industrial sectors absorb any loss from the water limitations. 
Furthermore, since crops are irrigated depending on their value and water availability, many crops 
are partially irrigated on a regular basis, which is why we see unmet requirement in the baseline 
scenario (see Figure 5). Partial irrigation complicates the interpretation of UWR in the baseline 
scenario, so we focus on changes in UWR, assuming that these changes indicate additional stress 
in a given region. For instance, an increase in unmet requirement would likely decrease the supply 
from the agriculture sector, which could increase food prices.  

 
Figure 5. Baseline unmet water requirement (%) for the study region at the ASR level. Unmet requirement is defined 

as total consumptive use divided by the total water requirement. 

The second measure, a Water Stress Index (WSI), is used to assess the stress on the water 
resource system for each ASR. For this, we use the metrics adopted for other applications of the 
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IGSM-WRS (Strzepek et al., 2013; Blanc et al., 2013). Our WSI, similar to that developed by 
Smakhtin et al. (2005), is based on input water flows (from surface runoff and upstream ASRs) 
and desired withdrawals, as a measure of the pressure that human water uses exert on renewable 
surface fresh water. This measure does not calculate unmet requirement; instead, it gauges stress 
on the natural water system through its accounting for withdrawal and consumptive uses. WSI is 
calculated as the ratio of each ASR’s mean annual total withdrawal (TW), which by definition 
includes consumptive loss, to the mean annual runoff (RUN) generated within the ASR, plus inflow 
(INF) from any upstream ASR that flows directly into it, as described by Strzepek et al. (2013): 

WSI = 
TW

RUN+INF 

For only the municipal and industrial sectors, water requirements included in TW are represented 
by consumptive use in the model—with additional consideration for reuse within the basin to assess 
total withdrawal3. To estimate withdrawal, we use common ratios that represent the fraction of 
consumption over withdrawal. Inflow to any given ASR is a consequence of flow regulated from 
upstream ASRs; therefore WSI is an evaluation metric of the managed water system as simulated by 
WRS. Irrigation receives its total withdrawal, with its return flow credited to the downstream ASR 
(see Strzepek et al., 2013 for details). We characterize the severity of water stress according to 
Smakhtin (2005), which classifies an ASR’s water use as slightly exploited when WSI < 0.3; 
moderately exploited when 0.3 ≤ WSI ≤ 0.6; heavily exploited when 0.6 ≤ WSI ≤ 1; overly exploited 
when 1 ≤ WSI < 2; and extremely exploited when WSI ≥ 2. Similar water-stress indices are 
computed in other studies and generally consider a threshold of 0.4 to indicate severe water limitation 
(e.g., Vörösmarty et al., 2000; Wada et al., 2011). Figure 6 shows the WSI for the baseline scenario. 
As shown, a large portion of northern China as well as India and the Indus River systems experience 
at least moderate to extremely exploited water conditions. 

 
Figure 6. Distribution of water stress index by ASR, as simulated by IGSM-WRS from the baseline climate run. 

                                                
3 Based on the assumption that any return flow (withdrawal in excess of consumption) is likely returned to the 

ASR’s storage within the month. This assumption is not appropriate for irrigation because return flow, which 
may be substantial, may not be returned to the ASR storage immediately. 
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3. RESULTS  

3.1 Distributional Changes in Climate Parameters 

 In the IGSM-WRS framework, two variables respond to changes in climate: runoff, which 
provides surface water supply to the ASR; and irrigation requirement, which is an estimation of 
farming water requirements. The baseline runoff is shown in Figure 7 in billion cubic meters 
(BCM). In general, there is substantial runoff in the southeast, which benefits from a wet and 
humid climate, while the north and far west of the region are especially dry. Note that, in order to 
keep units consistent, runoff is not normalized by area, so larger ASRs have more runoff in part 
due to the contributing land area.  

 
Figure 7. Baseline annual runoff by ASR (in billion cubic meters per year). 

We take two approaches to present the large number of future runoff changes: (1) we show 
example maps of probability points on the distribution of a single metric, maintaining the 
geographic spatio-temporal patterns in each scenario, and (2) we simplify complex results by 
ignoring spatio-temporal correlations and mapping points for specific values in the ASR 
probability distributions. For (1), first we characterize the resulting runoff of each scenario using 
a single metric across area and time. We find a strong likelihood that runoff will increase for the 
majority of the population (Figure 8). The values shown (as a cumulative probability 
distribution) are calculated using a population-weighted mean of the percent change in annual 
runoff from all the ASRs by 2050, with ensemble members sorted from driest to wettest. Around 
90% of scenarios suggest an overall increase in runoff. While the scenarios shown in Figure 8 
indicate a predominate tendency toward a relative increase in runoff averaged for the entire 
region, we find that the variability across ASRs is quite diverse.  
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Figure 8. Percentage change in runoff across all ensemble members. Each point in the line represents one of the 

551 members with appropriate weights from the Gaussian Quadrature (Section 2.3). The percent change in 
runoff represents a weighted-averaged result for the entire domain of study region (Fig. 1) - such that for every 
member's result in the distribution shown, each ASR's runoff has been weighted by its population (Fig. 3).  

Figure 9 highlights this situation. The first column shows results around the 10th percentile, 
the second column around the median, and the third column around the 90th percentile. With 
these we can see there are patterns that persist in most cases, e.g., a wetter result in southern 
central India and much of Southeast Asia, or drier result in western Pakistan and Afghanistan, 
but many of the ASRs provide varying results depending on the specific climate pattern. The 
diversity in the regional patterns of runoff change is further illustrated by mapping the 10th, 
median, and 90th percentiles of runoff change for each ASR in a “point-wise” fashion (Figure 10). 
As a result, these maps display a general inference about the runoff change distribution at each 
ASR, but do not represent the likelihood of a specific climate pattern. In this context, for any 
given ASR, a wetter climate would be anticipated for those in the southern portions and a drier 
climate in the north, as compared to the baseline scenario. Southern India and the Indo-Chinese 
peninsula are especially prone to a wetter future climate as reflected by increased runoff in 90% 
of the scenarios; Afghanistan, Pakistan and portions of China are especially prone to a drier 
future climate, as 90% of the scenarios indicate decreased runoff.  

The other calculated metric within the WRS framework that is influenced by the IGSM's 
climate response and pattern-scaling is the irrigation requirement—an estimate of the amount of 
water that farming in an ASR would use if there were an abundant water supply (given irrigated 
area per crop and irrigation efficiencies). In this modeling framework, irrigation requirement 
responds to changes in precipitation and temperature, rising when soil conditions are drier and 
falling when they are wetter, without exceeding the maximum water needed by the crop. 
Baseline irrigation requirement is shown in Figure 11. We calculate the percentage change in 
irrigation requirement, weighted by population, for each scenario. A distributional summary 
across the ensemble members is shown in Figure 12, ordered from least to greatest. A majority 
of the simulations result in increased irrigation requirement, i.e., a drier climate, in about 70% of 
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the scenarios. This result seems to be in conflict with runoff changes, which is responding to the 
same climate as the irrigation requirement. The reason for this conflict lies in the complexities of 
the two mechanisms—climate conditions are not simply wet or dry. For example, the irrigation 
requirement is highly dependent on the growing season and irrigated area of each crop. In some 
cases, the results show changes in seasonal climate patterns, with a drier growing season and 
wetter dormant season, resulting in a wetter climate overall. Another reason for the conflict is 
that excess water for irrigation is ignored in the irrigation requirement estimation; we only 
estimate the amount of water the crops require, which is not satisfied by rainfall, to obtain a yield 
without water stress. In the case that a crop receives all it needs from rainfall in the baseline 
scenario, an increase in rainfall does not change the irrigation requirement.  

Figure 9. Runoff change patterns (in %) around the 10th, 50th, and 90th percentile, two each based on the mean runoff 
change for the region (the metric used in Figure 8). Top label shows the percentile (left) and the GCM name (right.) 

10th percentile 50th percentile 90th percentile 

 

 
Figure 10. Changes in ASR runoff (%) calculated point-wise by ASR, showing changes in decadal averaged ASR 

runoff from the baseline to the future scenarios averaged over 2041–2050 for the 10th, 50th, and 90th percentiles.  
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Figure 11. Baseline irrigation requirement (in billion cubic meters) 

 
Figure 12. As in Figure 9, but shown for percentage change in irrigation requirement across all ensemble members. 

Each point in the line represents one of 551 climate scenarios.  

Similar to Figure 9, in Figure 13 we show examples of six maps of changes in irrigation 
requirement: two from ensemble members near the 10th percentile, two near the 50th percentile, 
and two near the 90th percentile results. Again, we see that different climate patterns can result in 
a similar value of the metric used in Figure 12. In these examples, we do see a general wetting in 
the south and southeast and drying in the north and west, although not all examples shown 
adhere to these general patterns.  

Similar to the point-wise maps of runoff shown in Figure 10, individual ASR changes in 
irrigation requirement are mapped in Figure 14. Since precipitation and temperature are the main 
drivers for both runoff and irrigation requirement estimations, we see a similar pattern in both 
maps, with the north drier (i.e., increased irrigation requirement) and the south wetter (i.e., 
decreased irrigation requirement). Since the irrigation sector is by far the largest requirement for 
water in this region, small changes in mean irrigation requirement can have a substantial impact 
on the water sector within each ASR.  
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Figure 13. Irrigation requirement change patterns (in %) around the 10th, 50th, and 90th percentile, two each based on 
the mean irrigation requirement change for the region. Top label shows the percentile (left) and GCM name (right.) 

10th percentile 50th percentile 90th percentile 

 

 
Figure 14. Changes from baseline in irrigation requirement (%) calculated point-wise by ASR, showing changes  

in decadal averaged ASR irrigation requirement from the baseline to the future scenarios averaged over  
2041–2050 for the 10th, 50th, and 90th percentiles. 

3.3 Distributional Changes in Growth Parameters  

Domestic and industrial water requirements are both driven by changes in growth in the WRS 
framework. Although these consumptive requirements are smaller than the irrigation 
requirements in the baseline scenario, in most ASRs they do play a significant role in the future 
scenarios, depending on population growth and GDP projections.  
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3.3.1 Domestic Water Requirements 
Domestic water requirement for the baseline scenario is shown in Figure 15. Taking a similar 

approach as with the runoff and irrigation requirements, a region-wide estimate of domestic 
water requirement is shown in Figure 16 as a percent change, weighting each ASR value by 
population. Compared to changes in irrigation requirement, domestic water requirement grows 
substantially percentage-wise, with an 80% to 180% increase. But, since the baseline domestic 
requirement is small compared to the baseline irrigation requirement (see Figs. 11 and 16), the 
total amount of increase in requirement is relatively small.  

 
Figure 15. Baseline domestic water requirement (in billion cubic meters). 

 

 
Figure 16. As in Fig. 13, but for percent change in domestic requirement for the region for all scenarios. Each point in 

the line represents one of 400 growth scenarios. Percent change for each ASR in each scenario is weighted by 
population.  
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Now we analyze the variety of domestic water requirement mapped across the region (shown 
in Figure 17). For the growth parameters, the variety of changes across the region is derived 
from the EPPA results and is important in order to be consistent in terms of the interaction of the 
region’s socio-economics by EPPA region (Figure 1).  

Figure 18 summarizes the distributional changes in domestic water requirement (2000–2050) 
across scenarios by presenting the 10th, 50th and 90th percentiles, calculated individually for every 
ASR. Contrary to irrigation requirement, this water demand only increases across all the ASRs 
for the future. China is expected to see relatively small increases in domestic requirement 
compared to Mainland Southeast Asia and parts of India, where substantial increases are 
expected—between 2 and 5 times the baseline values.  

Figure 17. Domestic water requirement change by region (in %) around the 10th percentile, median, and 90th 
percentile, two each, similar to the metric used in Figure 16. Top label shows the percentile. 

10th percentile 50th percentile 90th percentile 

 

 
Figure 18. Changes from baseline in domestic water requirement (%) calculated point-wise by ASR, changes are 

based on the baseline (Fig. 16) to the future scenarios averaged over 2041–2050 and shown for the 10th, 50th, 
and 90th percentiles for each ASR. 
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3.3.2 Industrial Water Requirement 
In this model framework, the industrial water requirement responds to changes in per capita 

GDP. The baseline industrial water requirement is shown in Figure 19. A large portion of the 
industrial requirement is in China, with a fair amount in India and Vietnam.  

Figure 20 shows the inverse cumulative distribution of population-weighted percent change 
in industrial requirement. Industrial requirement varies considerably across scenarios, ranging 
from 60% increase to 440% increase from baseline, with a median of about 200%. In Figure 21, 
six examples of the variety of industrial water requirement changes are shown across scenarios 
of similar percentiles based on the mean percent change weighted by future population. Here we 
can see the richness of the scenario members’ patterns derived by the socio-economic modeling.  

 
Figure 19. Baseline industrial water requirement (in billion cubic meters). 

 
Figure 20. Mean change in industrial requirement for the region for all scenarios. Each point in the line represents 

one of 400 growth scenarios.  Percent change for each ASR in each scenario is weighted by population. 
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Once again, using the probability distribution of each individual ASR, we calculate and map 
the 10th, median, and 90th percentiles, shown in Figure 22. Here we see that the industrial 
requirement for ASRs in India and China increase considerably, by about two or three times the 
baseline amount in the median case and three to four times in the 90th percentile.  

 

Figure 21. Industrial requirement change (in %) around the 10th percentile, median, and 90th percentile, two each, 
based on the mean industrial requirement change for the region (the metric used in Figure 20). Top label shows 
the percentile. 

 

10th percentile 50th percentile 90th percentile 

 

 
Figure 22. As in Fig. 19, but for industrial water requirement shown for the 10th, median, and 90th percentiles for each ASR. 

3.4 Mapped Changes in Water Stress 

 As previously discussed (Section 2.4), we assess changes in water stress via two measures: 
UWR and WSI. We will also evaluate these changes across three ensembles: Just Growth, Just 
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Climate, and Climate and Growth. For the Just Growth ensemble, we run the model with the 
baseline climate, changing only the growth parameters—population and GDP—which affect 
domestic and industrial water requirements. With this ensemble, we isolate the effects of growth by 
removing the effects of climate. In the Just Climate ensemble, we keep the growth parameters 
constant at the year-2000 value, and provide the model with a different future climate projection 
for each scenario. With this ensemble, we remove the effect of growth and focus on the effect of 
climate change. In reality, growth and climate occur simultaneously; however, for policy decisions, 
distinguishing growth effects from climate change effects is important since policy rarely targets 
both growth (e.g., population or wealth) and climate (GHG mitigation) simultaneously. We are 
also interested to assess the degree to which the effects of growth and climate interact non-linearly. 
Hence, we run a final ensemble, Climate and Growth, which combines the two effects, and 
represents the future we face under an “unconstrained emissions” pathway. 

In Figure 23 the 10th, 50th, and 90th percentiles of UWR point-wise distribution are mapped for 
each of the three scenario groups. For the Just Growth scenario group, we see UWR increasing or 
remaining constant, even in the 10th percentile, although there are some basins that are affected by 
growth changes more than others. In the Just Climate scenario group, driven by the changes in 
runoff and irrigation requirement, UWR decreases in the south, for much of India and the  

 10th percentile 50th percentile 90th percentile 

Ju
st

 G
ro

w
th

 

 

Ju
st

 C
lim

at
e 

C
lim

at
e 

an
d 

G
ro

w
th

 
 

Figure 23. Exceedance changes in ASR UWR (%). Changes are based on the baseline (Fig. 6) to the future 
scenarios averaged over 2041–2050 and shown for the 10th, 50th, and 90th percentiles for each ASR. 



 

23 

Indo-Chinese Peninsula, and increases for much of China (especially in the east), Afghanistan and 
Pakistan. For the Climate and Growth median case, we find many similarities to the Just Growth 
scenario. UWR increases in almost all of the ASRs, with exceptions in Cambodia, Laos, Thailand, 
and eastern India; this suggests that the positive climate effects outweigh the negative growth 
effects in the south while the negative climate and growth effects are compounding in much of 
China. Appendix A shows the distribution of scenarios using the population-weighted change in 
UWR and the example maps around specific points in the distribution using that single metric. 

Figure 24 shows series of maps for the WSI similar to that shown for UWR in Figure 24. 
Results for the three ensembles are mapped for every ASR based on specified exceedances—
10th, 50th, and 90th percentiles. There is a similar overall pattern to this stress index as was shown 
for UWR. Stress increases in all maps as a response to the growth changes, while there are some 
positive and negative responses to changes in climate. However, when we combine these two 
effects in the third row of maps, the majority of the benefits are overpowered by the negative 
effect of growth, with the exception of two ASRs in southern India in the median map. For the 
90th percentile results, all ASRs show increased WSI. 
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Figure 24. Exceedance changes in decadal averaged WSI (unitless). Changes are based on the baseline (Fig. 7) to 
the future scenarios averaged over 2041–2050 and shown for the 10th, 50th, and 90th percentiles for each ASR. 
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Another way to show the distributions of each ASR is to map the exceedance probability of 
specific WSI values. Figure 25 shows the exceedance probabilities at three distinct levels of 
WSI: probability of a future WSI higher than the baseline, probability of increasing at least 0.05, 
and probability of increasing at least 0.2. In many of the basins we consider, we find that these 
exceedance values (0, 0.05, and 0.2) were derived from the historical bootstrap presented in the 
next section, where a change of 0.05 is larger than the variance of the bootstrapped history and a 
change of 0.2 is larger than the range of the bootstrapped history. For the Just Growth ensemble, 
the probability of increasing WSI is 100% for all ASRs, but most of the ASRs (especially 
Southeast Asia) have a lower probability of a substantial WSI increase (i.e., greater than 0.05). In 
northern China and southern India, there is a much larger probability of a substantial WSI 
increase. For the Just Climate ensemble, the southern portion of the region has a low probability 
of increasing WSI, while the northern portion, including China, has high probability; although, in 
southern China, the increase in WSI is likely to be less than in northern China. The Climate and 
Growth ensemble results in larger stress probabilities across the three WSI increase thresholds 
that are, again, higher in the south than the north and west of the region.  
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Figure 25. Probability of exceedance for change in WSI. Changes are based on the baseline (Fig. 7) to the future 
scenarios averaged over 2041–2050. Columns are % probability of WSI increase: > 0 (left); > 0.05 (center); and 
> 0.2 (right). Scenarios: Just Growth (top row), Just Climate (middle row), and Climate and Growth (bottom row). 
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We apply the same mapping technique to UWR (Figure 26), with three increase thresholds: 
probability of increasing, probability of increasing at least 2% and probability of increasing at 
least 4%. Again, these values are deemed significant based on the historical bootstrap shown in 
the following section. For Just Growth, with few exceptions most ASRs increase UWR in all 
scenarios; most will likely increase between 0 and 4%. For Just Climate, southeast Asia is 
generally less likely to increase UWR, but most ASRs in China and India are likely to experience 
increases between 0 and 2%. In the Climate and Growth ensemble, most of southeast Asia and 
India show increases in UWR between 0 and 2%, although some show low probability of 
increasing at all. For the majority of China, the increases in UWR are more likely to be between 
2% and 4%. 
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Figure 26. As in Figure 26 but for probability of exceedance for changes in UWR. Columns are % probability of UWR 
increase: > 0 (left); > 2 (center); and > 4 (right). Scenarios: Just Growth (top row), Just Climate (middle row), 
and Climate and Growth (bottom row).  
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3.5 Water Stress Frequency Distributions 

Next, we show the frequency distributions of outcomes to qualify the consequences of the 
scenarios in terms of future risk. We select specific regions, first by political boundaries and second 
by hydrologic basin boundaries (see Figure 28), and calculate the aggregate water stress for 2041–
2050 over the region, with ASR values weighted by population. As in the previous section, we 
compare these WSI changes with the baseline scenario WSI. Recognizing that the baseline scenario 
is only one of many possible traces of climate through time, we develop a baseline ensemble to 
understand the range of water stress that results from the impact of climate sequences on water 
availability. To do this, we use a multivariate k-nearest-neighbor bootstrap approach (as discussed 
in Lall and Sharma, 1996) to develop this baseline ensemble of 500 members, each containing a 50-
year time series of the required WSM climate-dependent input data including monthly values of 
irrigation requirement, runoff, and reservoir evaporation. Lall and Sharma (1996) shows that the 
multivariate k-nearest-neighbor bootstrap approach has the advantage over simple bootstrapping in 
that it maintains the lag-1 correlation as well as geospatial correlations. As constructed, the baseline 
ensemble can be viewed as a statistically based emulation of the uncertainty in the WRS projection 
caused by the natural variability of climate – which is inherently unpredictable  

In Figure 28, we show the two stress indices using a kernel smoothing approach to approximate 
the shape of the distribution of three major political regions (as shown in Figure 27): China, India, 
and Mainland Southeast Asia. These plots show characteristics of the distributions, e.g., mode, 
skewness and the nature of the distribution tails. The three future ensembles—Just Growth in red, 
Just Climate in blue, and Climate and Growth in yellow—are shown as the difference from the last 
decade of the baseline scenario value (2040–2050) and that of the future result. The baseline 
ensemble distribution (in grey) shows the difference between the 50-year baseline scenario mean 
and the last ten years of each baseline ensemble member. The baseline scenario-mean value is also 
printed above each plot. We can thus compare the distributions from natural variability (the grey 
distribution) to the range of the future water stress ensembles to understand the magnitude of the 
uncertainty derived from changes in climate, growth, or both.4 In China, both growth and climate 
have adverse effects but growth is slightly stronger. The Climate and Growth ensemble is, as 
expected, worse but not simply an aggregate of the two. In India, climate has either a slightly 
positive effect, as is shown in the WSI distribution, or no effect where the mode is around zero 
change. Growth has a strong negative effect, and the combined ensemble is dominated by this 
effect. We see this to be especially true in the UWR distribution. In Mainland Southeast Asia, 
climate is mostly beneficial to the water supply but growth is not, resulting in a combined effect 
that is close to no change. Note that the natural variability distributions are rarely wider than the 
distribution of the future ensembles, but in some cases (e.g., WSI in Mainland Southeast Asia) 
future uncertainty by the 2040s is close to the historical uncertainty.  
                                                
4 We remove the natural variability from the changes in these future WSIs by comparing them with the baseline, 

which contains the same natural variability. This is an effect of using the delta method, and allows us to focus on 
long-term mean changes, isolating the effect of the climate change trend from that of natural variability in climate. 
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Figure 27. Map of major political regions showing the aggregate frequency distributions of water stress. 
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Figure 28. Frequency distributions of changes in decadal averaged Unmet Water Requirement (UWR, left) and water 

stress index (WSI, right) for 2041–2050 against the baseline result aggregated over major socio-economic regions 
(Fig. 28) and weighted by population. Mean baseline value shown above each figure. Results are shown for the Just 
Growth, Just Climate, and Climate and Growth ensemble scenarios.  In addition, a distribution for the Baseline result 
is also provided that depicts the range of UWR and WSI decadal-averaged changes that would result from internal 
variability of the climate forcing (see text for details). 



 

28 

Next, we aggregate by basin (see Figure 30), again using population to give each ASR a 
respective weight. These basins were chosen because their rivers cross country boundaries and 
could be a cause for political tension. As seen in Figure 31, in the Indus Basin, shared mostly by 
India and Pakistan, there is considerable stress in the baseline case; climate and growth both 
increase stress further, and few scenarios result in a stress decrease. In the Ganges basin, climate 
and growth both increase stress for most of the scenarios; climate is less potent than growth in 
terms of UWR, but has a similar effect in the WSI. The Mekong and Brahmaputra basins both 
reside in wet climates with low storage basin-wide. These areas are also major producers of paddy 
rice, a water intensive crop, which results in high UWR. In the Mekong, climate has a positive 
effect, and the growth effects are minor; in the Brahmaputra, climate has a slightly negative, almost 
neutral effect, while growth is more extreme—especially in terms of UWR changes.  

3.6 Populations at Risk to Increased Water Stress 

An analysis was performed to assess the population that is prone to water-stress exposure under 
current conditions and future scenarios. The population of each ASR was assigned to one of the 
water-stress classifications, using both UWR and WSI, based on the value of the resulting water 
stress indicator. Note that in our model we are assuming that population growth is constant by 
EPPA region, where each ASR grows proportionally to the baseline population. For UWR, a simple 
classification is used: Class 1 is less than 5%, class 2 is between 5% and 10%, classes 3, 4 and 5 are 
set at increments of ten, and the final class, 6, is set to values above 40%. We count the number of 
people in each UWR class for the Baseline scenario and compare that to the same metric at 2050 
from the three scenario ensembles (Just Climate, Just Growth, and Climate and Growth). These 
results are shown in Figure 31.  

In this figure, note that the Just Climate ensemble has no population growth, so the difference 
between the Just Climate and the other two ensembles is largely attributed to the additional 
population (in the Just Growth and Climate and Growth scenarios). Also, note that the Just Climate 
ensemble does not change in the extreme classes: Class 1, 5 and 6. The largest effect of climate is to 
shift population from Class 2 to Class 3 (see Table 1a), which is a movement into a more severe 
water stress state. We see this movement in Just Growth as well (Table 1b), but here the unmet 
requirement is changing for many ASRs from Classes 2 and 3 into the next higher stress class 
(Classes 3 and 4, respectively). These ASRs are moving into a higher UWR class because growth 
only increases UWR, as we have shown (Section 3.5). The most striking change is the increase of 
population in Class 4 and Class 6, compared to the baseline, for both the Just Growth and Climate 
and Growth ensembles. The increases in Class 6 are largely attributed to population growth 
occurring within ASRs that are already at this high stress level (Tables 1b and 1c); increases in 
Class 4 populations are largely attributed to the addition of former Class 3 populations, due to 
water demand increases from growth (Table 1b) or the combined effects of growth and climate 
change on supply and demand changes (Table 1c). An additional notable result of the Climate and 
Growth scenario is that it removes all instances of populations moving to decreased stressed 
conditions, seen in a small fraction of cases for the Just Climate scenario (Tables 1a and 1c).  
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Figure 29. Map of major basins used to show the aggregate frequency distributions of water stress.  
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Figure 30.  As in Fig. 29, but aggregated over selected basins (Fig. 30). Mean baseline value shown above each figure. 

Results are shown for the Just Growth, Just Climate, and Climate and Growth ensemble scenarios.  
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Figure 31. Population exposed to water stress based on UWR classifications using the 2041–2050 mean. Grey bars 

represent the number of people in each class in the baseline scenario (set to year-2000 value); the box-and-
whisker plots show the distributional characteristics of the three ensemble scenarios.. 

Table 1. Matrix of populations’ (in millions) exposure to water stress. Shaded gray cells show the population 
remaining in the UWR class relative to the Baseline result. The off-diagonal cells denote population shifts by 2050 
across the various UWR classes; population shifts between classes are depicted by their location within the table 
matrix. Each cell provides the 10th [left, bracketed], 50th (center, bold), and 90th [right, bracketed] percentile results. 

1a. Just Climate 
          To 
From   Class-1 Class-2 Class-3 Class-4 Class-5 Class-6 

Class-1 [848] 970 [970] [0] 0 [122]     
Class-2  [124] 197 [197] [93] 93 [167]    
Class-3  [0] 44 [44] [294] 372 [372] [0] 0 [78]   
Class-4   [15] 15 [47] [8] 39 [39]   
Class-5     [793] 793 [793]  
Class-6     [0] 0 [3] [406] 409 [409] 

 
1b. Just Growth 

        To 
From   Class-1 Class-2 Class-3 Class-4 Class-5 Class-6 

Class-1 [1188] 1332 [1477] [0] 0 [66] 
    Class-2 

 
[29] 36 [117] [227] 273 [401] [0] 124 [162] 

  Class-3 
  

[344] 415 [464] [198] 238 [313] 
  Class-4 

   
[27] 32 [37] [0] 0 [43] [0] 43 [51] 

Class-5 
    

[703] 806 [925] [103] 216 [252] 
Class-6 

     
[556] 624 [691] 

 
1c. Climate and Growth 

          To 
From   Class-1 Class-2 Class-3 Class-4 Class-5 Class-6 

Class-1 [978] 1249 [1422] [0] 62 [346] 
    Class-2 

 
[1] 36 [145] [216] 272 [394] [0] 127 [162] 

  Class-3 
 

[0] 55 [76] [253] 336 [469] [125] 296 [367] 
  Class-4 

   
[26] 31 [35] [0] 4 [48] [0] 41 [51] 

Class-5 
    

[742] 851 [963] [117] 141 [227] 
Class-6 

     
[560] 621 [696] 
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For WSI, water-stress classifications are based on the aforementioned Smakhtin et al. (2005) 
study (Section 2.4): WSI < 0.3 is slightly exploited; 0.3 ≤ WSI ≤ 0.6 is moderately exploited; 0.6 
≤ WSI ≤ 1 is heavily exploited; 1 ≤ WSI < 2 is overly exploited; and WSI ≥ 2 is extremely 
exploited. The strongest effect of the Just Climate scenario is to bring more populations currently 
living under Moderately stressed conditions into Heavily water stressed environments by 2050 
(Figure 33, Table 2a). Similar to the results seen for UWR, there are only a small number of 
cases in which climate will move populations into less stressed WSI conditions. The effect of 
Just Growth is consonant with the Just Climate result (Table 2b), where a comparable increase 
in population is taken from Moderately into Heavily stressed conditions. Combined, the Climate 
and Growth scenario places comparable populations from Moderately stressed environments into 
Heavily stressed environments (Figure 33, Table 2c). In doing so, the Moderately stressed 
condition is the only class of WSI that contains a decrease in the median total population (on the 
order of 100 million) at 2050 (compared to the Baseline condition). 

We further aggregate these classifications to underscore the impacts of these scenarios on the 
more severe water-stress conditions. We assign a threshold to both the UWR and WSI measures, 
so an ASR may be classified as either stressed (over the threshold) or unstressed (under the 
threshold). The developed aggregations are shown in Table 3. For UWR we use a threshold 
value of 10% (reflecting at least 10% annual water requirements not met) and for WSI we use a 
threshold value of 0.6 (must be at least in the Heavily stressed class). Overall, we find no 
occurrences (in any member, among all scenarios) of a decrease in the total water-stressed 
population by 2050. The effect of socio-economic growth is quite evident, as seen by the median 
result of over 1 billion additional people exposed to “water-stressed” conditions by 2050. 
Additionally, in only 10% of the members will this result be below 750 million based on either 
the UWR or WSI indicators. The Just Climate scenario impact is small for the UWR-based 
result, causing a median shift of less than 2% population increase. Population shifts across the 
WSI-based threshold are almost ten times more sensitive to the Just Climate scenario compared 
to the UWR-based result, with nearly 400 million additional people becoming water-stressed by 
2050. The Just Growth scenario provides very comparable results between the UWR and WSI 
based thresholds, with both outcomes indicating that over 1 billion additional people by 2050 
will become water-stressed due to socioeconomic growth unconstrained by global actions to 
limit greenhouse gas concentrations. There is a small beneficial effect to this result when the 
effects of climate change are added (as indicated by the Climate and Growth result), but it only 
results in a ~1% reduction in the population growth affected by socioeconomic changes. Overall, 
the central tendency of the UWR and WSI based thresholds in the Climate and Growth scenario 
is to flank (i.e. within ± 100 million) a future outcome that 1 billion additional people will be 
living in regions under water stress. 
  



 

32 

 
Figure 32. Population exposed to water stress based on WSI classifications using the 2041–2050 mean. Grey bars 

represent the number of people in each class in the baseline scenario (set to year-2000 value); the box-and-
whisker plots show the distributional characteristics of the three ensemble scenarios. 
 

Table 2. Matrix of populations’ (in millions) exposure to water stress. Shaded gray cells show the population 
remaining in the WSI class relative to the Baseline result. The off-diagonal cells denote population shifts by 2050 
across the various WSI classes; population shifts between classes are depicted by their location within the table 
matrix. Each cell provides the 10th [left, bracketed], 50th (center, bold), and 90th [right, bracketed] percentile results. 

2a. Just Climate 
             To 

From   Slightly Moderately Heavily Overly Extremely 

Slightly [1296] 1296 [1296] [82] 82 [82]    
Moderately [0] 73 [216] [153] 313 [586] [0] 395 [402]   
Heavily   [82] 82 [86] [0] 4 [4]  
Overly   [0] 0 [26] [535] 562 [562]  
Extremely     [163] 192 [192] 

 
2b. Just Growth 

             To 
From   Slightly Moderately Heavily Overly Extremely 

Slightly [1531] 1713 [1875] [135] 177 [318]    
Moderately  [253] 368 [534] [546] 699 [889]   
Heavily   [9] 107 [124] [21] 25 [102]  
Overly    [529] 699 [810] [0] 0 [207] 
Extremely     [221] 246 [270] 

 
2c. Climate and Growth 

             To 
From   Slightly Moderately Heavily Overly Extremely 

Slightly [1589] 1736 [1904] [104] 161 [277]    
Moderately [0] 0 [123] [323] 443 [987] [13] 625 [746]   
Heavily   [0] 107 [137] [7] 29 [127]  
Overly    [524] 679 [805] [0] 0 [207] 
Extremely     [207] 244 [270] 

Water Stress Index (WSI) 
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Table 3. Water-stressed population increase (in millions and percent). Based on a threshold of 10% for unmet 
requirement (UWR) and 0.6 for WSI. Each cell provides the 10th percentile [left bracketed value], median (center in 
bold type), and 90th percentile [right bracketed value] results. 

 Potential Increase in Population in water stressed regions (millions) 

UWR > 10% 
Baseline = 1672 (57%) 

WSI > 0.6 
Baseline = 839 (28.6%) 

 10th Median  90th  10th Median  90th 

Just Climate 
  [4]  49  [122] 

  [0.1%] 1.7%  [4.2%] 

  [0]  395  [402] 

  [0%] 13.5%  [13.7%] 

Just Growth 
  [818] 1,086  [1,297] 

  [21.8%] 26.0%  [29.2%] 

  [784]  1,001  [1,242] 

  [20.1%] 23.9%  [28.1%] 

Climate and Growth 
  [757] 1,030  [1,264] 

  [19.8%] 25.1%  [28.9%] 

  [297]  911  [1,090] 

  [7.3%] 22.1%  [24.7%] 

4. DISCUSSION AND CLOSING REMARKS 

This study has employed the IGSM-WRS framework aimed at assessing the fate of managed 
water systems, depicted by 52 large sub-regions across Asia. A number of experiments were 
performed to assess the isolated as well as combined effects of socioeconomic growth and 
regional climate change out through the 2040s. With this large ensemble of projections, a 
frequency distribution of impacts was developed that articulates the severity and likelihood of 
water stress in this region of Asia. We find a variety of patterns across the region for changes in 
surface-freshwater supply, and this results from a variety of influences in the hydroclimate (i.e. 
runoff) as well as water requirements in agriculture, industry and municipality water needs. We 
find that regions most vulnerable to changes in climate include much of China (especially in the 
north), Pakistan and Afghanistan. Further, India, China and Mainland Southeast Asia are all 
highly likely to experience significant changes in socioeconomically-driven water requirements.  

Some limitations and assumptions made within the framework for this particular 
experimentation are notable. First, we model consumptive water requirement rather than 
withdrawal. We do this because our sub-regions are large, and presumably will include 
substantial water reuse within an ASR. Second, we keep irrigated areas constant by crop for all 
scenarios. In reality, these changes respond to a variety of drivers, including local and global 
food prices, land and water availability, and government subsidies. Estimating changes in 
irrigated area is a difficult task; however, we do plan to include these changes in an upcoming 
report, as they have the potential for profound impact on future water stress. Third, the 
framework uses socioeconomic drivers exogenously, therefore missing potentially important 
feedbacks (e.g., water limitations could have an adverse effect on food or energy prices, which 
would likely cause shocks in the economic system on a local or global scale, further affecting 
investments in water-related technology and infrastructure). Lastly, this framework’s water 
management simulation uses a single objective function with perfect foresight within a calendar 
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year, consistent priorities across all ASRs, and perfect cooperation within a river network. 
Furthermore, we do not simulate hydropower generation in the representative reservoirs. 
Realistic water management is done in a complicated, often inefficient fashion with varying 
knowledge about next month’s water supply (e.g., water managers generally know historical 
averages). These assumptions about water management allow us to have a water allocation 
scheme that is consistent across ASR and scenario, providing a model environment that is not 
partial to regions that are historically “better” water managers. Our scheme also adapts to 
changes in water supply and requirement more efficiently than a realistic system, likely 
providing a more optimistic picture of water stress in the region. For example, water managers 
are typically challenged and forced to make operational decisions based on imperfect 
information and forecasts, and hydropower needs may interfere with water allocation. These 
assumptions and limitations are issues we plan to address in future studies.  

Regardless, there are a number of significant results we have found in this study. For 
example, by isolating socioeconomic growth from changes in climate, we find that the two have 
characteristically different impacts on water stress. Industrial and municipal water requirements, 
driven by socioeconomic growth, are less significant in the baseline but will increase 
considerably in the future. Alternatively, changes in climate can be significant in our current 
system, but do not change as much (compared to growth) in the future relative to their baseline 
value, and these changes range from positive to negative. Socioeconomic drivers on water 
requirements are, therefore, likely to play a larger role in future management decisions than they 
do in the current system. When we assess potential population increase in water stressed regions, 
we find it highly probable that many people who live in moderately stressed conditions will live 
in heavily stressed conditions in the future. We specifically find that increases in water-stressed 
populations will be almost 1 billion in the median case, more than doubling the baseline case (for 
WSI). These changes will likely require more aggressive water policies and regulations in areas 
where water resource decisions have been less tense historically. Without assertive water policies 
in these regions, water limitations could be harmful to the health and well being of the people in 
these regions, as well as the environment.  

These results do not necessarily imply an insurmountable future for this region. Through 
climate mitigation, and perhaps most importantly, proper planning and financing of adaptive and 
protective measures for these anticipated shortages—based on reliable information as to the 
effectiveness of certain strategies to avert the risks presented above—these future water systems 
can be augmented to better ensure their resiliency and sustainability. Addressing these options 
for the future, however, will require substantial research and additional experimentation with 
integrative tools like the IGSM-WRS. Forthcoming studies will expand upon these experiments 
to quantify the effectiveness of climate mitigation policies and widespread adaptive measures 
such as enhanced storage, expansive water transfers, water-use efficiencies, and reduced 
consumption via water mandates or changes in common practice. 
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APPENDIX A: CLIMATE-CHANGE PATTERN KERNELS 

 

 
Figure A-1. Climate-change pattern kernels (unitless) of DJF temperature from the IPCC AR4 climate models. Used 

to construct hybrid climate-change distributions from the IGSM. Shown are the relative changes in DJF 
temperature in response to a unit global temperature increase as a result of anthropogenic greenhouse 
emissions. Top: 17-map series showing pattern kernels for each AR4 GCM. Bottom left: mean of the pattern 
kernels. Bottom right: standard deviation.  
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Figure A-2. Climate-change pattern kernels (unitless) of DJF precipitation from the IPCC AR4 climate models. Used 

to construct hybrid climate-change distributions from the IGSM. Shown are the relative changes in DJF 
precipitation in response to a unit global temperature increase as a result of anthropogenic greenhouse 
emissions. Top: 17-map series showing pattern kernels for each AR4 GCM. Bottom left: mean of the pattern 
kernels. Bottom right: standard deviation.  
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Figure A-3. Climate-change pattern kernels (unitless) of JJA temperature from the IPCC AR4 climate models. Used 

to construct hybrid climate-change distributions from the IGSM. Shown are the relative changes in JJA 
temperature in response to a unit global temperature increase as a result of anthropogenic greenhouse 
emissions. Top: 17-map series showing pattern kernels for each AR4 GCM. Bottom left: mean of the pattern 
kernels. Bottom right: standard deviation. 
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Figure A-4. Climate-change pattern kernels (unitless) of JJA precipitation from the IPCC AR4 climate models. Used 
to construct hybrid climate-change distributions from the IGSM. Shown are the relative changes in JJA 
precipitation in response to a unit global temperature increase as a result of anthropogenic greenhouse 
emissions. Top: 17-map series showing pattern kernels for each AR4 GCM. Bottom left: mean of the pattern 
kernels. Bottom right: standard deviation. 
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APPENDIX B: UNMET WATER REQUIREMENT SINGLE MATRIX AND MAPS 

 
Figure B-1. Population weighted change in UWR (%) across the region for the Just Growth ensemble.  

 

Figure B-2. UWR change for the Just Growth ensemble (in %) patterns around the 10th, 50th, and 90th percentile, two 
each, based on the mean UWR change for the region. Top label shows the percentile. 
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Figure B-3. Population weighted change in UWR (%) across the region for the Just Climate ensemble. The colors 

correspond to the GCM pattern used as denoted in the legend. 

 

Figure B-4. UWR change for the Just Climate ensemble (in %) patterns around the 10th, 50th, and 90th percentile, two 
each, based on the mean UWR change for the region. Top label shows the percentile and GCM name. 
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Figure B-5. Population weighted change in UWR (%) across the region for the Climate and Growth ensemble. The 

colors correspond to the GCM pattern used as denoted in the legend. 

 

Figure B-6. UWR change for the Climate and Growth ensemble (in %) patterns around the 10th, 50th, and 90th 
percentile, two each, based on the mean UWR change for the region. Top label shows the percentile and GCM 
name. 
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APPENDIX C: WSI SINGLE METRIC AND MAPS 

 
Figure C-1. Population weighted change in WSI (%) across the region for the Just Growth ensemble. 

 

Figure C-2. WSI change for the Just Growth ensemble (unitless) patterns around the 10th, 50th, and 90th percentile, 
two each, based on the mean WSI change for the region. Top label shows the percentile  
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Figure C-3. Population weighted change in WSI across the region for the Just Climate ensemble. The colors 

correspond to the GCM pattern used as denoted in the legend. 

 

Figure C-4. WSI change for the Just Climate ensemble (unitless) patterns around the 10th, 50th, and 90th percentile, 
two each, based on the mean WSI change for the region. Top label shows the percentile and GCM name. 
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Figure C-5. Population weighted change in WSI across the region for the Climate and Growth ensemble. The colors 

correspond to the GCM pattern used as denoted in the legend. 

 

Figure C-6. WSI change for the Climate and Growth ensemble (unitless) patterns around the 10th, 50th, and 90th 
percentile, two each, based on the mean WSI change for the region. Top label shows the percentile and GCM 
name. 
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