19 research outputs found

    Matrix vesicles originate from apical membrane microvilli of mineralizing osteoblast-like Saos-2 cells

    No full text
    International audienc

    Matrix vesicles originate from apical membrane microvilli of mineralizing osteoblast-like Saos-2 cells

    No full text
    International audienc

    Membranes and pathophysiological mineralization

    No full text
    International audienceVascular calcification accompanies the pathological process of atherosclerotic plaque formation. Artery calcification results from trans-differentiation of vascular smooth muscle cells (VSMCs) into cells resembling mineralization-competent cells such as osteoblasts and chondrocytes. The activity of tissue-nonspecific alkaline phosphatase (TNAP), a GPI-anchored enzyme necessary for physiological mineralization, is induced in VSMCs in response to inflammation. TNAP achieves its mineralizing function being anchored to plasma membrane of mineralizing cells and to the surface of their derived matrix vesicles (MVs), and numerous important reports indicate that membranes play a crucial role in initiating the crystal formation. In this review, we would like to highlight various functions of lipids and proteins associated to membranes at different stages of both physiological mineralization and vascular calcification, with an emphasis on the pathological process of atherosclerotic plaque formation

    Proteomic characterization of biogenesis and functions of matrix vesicles released from mineralizing human osteoblast-like cells.

    No full text
    International audienceMatrix vesicles (MVs), released by budding from apical microvilli of osteoblasts during bone formation and development, are involved in the initiation of mineralization by promoting the formation of hydroxyapatite in their lumen. To gain additional insights into MV biogenesis and functions, MVs and apical microvilli were co-isolated from mineralizing osteoblast-like Saos-2 cells and their proteomes were characterized using LC-ESI-MS/MS and compared. In total, 282 MV and 451 microvillar proteins were identified. Of those, 262 were common in both preparations, confirming that MVs originate from apical microvilli. The occurrence of vesicular trafficking molecules (e.g. Rab proteins) and of the on-site protein synthetic machinery suggests that cell polarization and apical targeting are required for the incorporation of specific lipids and proteins at the site of MV formation. MV release from microvilli may be driven by actions of actin-severing proteins (gelsolin, cofilin 1) and contractile motor proteins (myosins). In addition to the already known proteins involved in MV-mediated mineralization, new MV residents were detected, such as inorganic pyrophosphatase 1, SLC4A7 sodium bicarbonate cotransporter or sphingomyelin phosphodiesterase 3, providing additional insights into MV functions

    TNAP as a therapeutic target for cardiovascular calcification - a discussion of its pleiotropic functions in the body

    No full text
    International audienceCardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several diseases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other important physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyridoxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full spectrum of TNAP's functions is needed to better characterize the effects of TNAP inhibition in diseases associated with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo

    Two-Step Membrane Binding of NDPK‑B Induces Membrane Fluidity Decrease and Changes in Lipid Lateral Organization and Protein Cluster Formation

    No full text
    Nucleoside diphosphate kinases (NDPKs) are crucial elements in a wide array of cellular physiological or pathophysiological processes such as apoptosis, proliferation, or metastasis formation. Among the NDPK isoenzymes, NDPK-B, a cytoplasmic protein, was reported to be associated with several biological membranes such as plasma or endoplasmic reticulum membranes. Using several membrane models (liposomes, lipid monolayers, and supported lipid bilayers) associated with biophysical approaches, we show that lipid membrane binding occurs in a two-step process: first, initiation by a strong electrostatic adsorption process and followed by shallow penetration of the protein within the membrane. The NDPK-B binding leads to a decrease in membrane fluidity and formation of protein patches. The ability of NDPK-B to form microdomains at the membrane level may be related to protein–protein interactions triggered by its association with anionic phospholipids. Such accumulation of NDPK-B would amplify its effects in functional platform formation and protein recruitment at the membrane

    Characterization of caged compounds binding to proteins by NMR spectroscopy

    No full text
    5 páginas, 4 figuras -- PAGS nros. 447-451Photolysable caged ligands are used to investigate protein function and activity. Here, we investigate the binding properties of caged nucleotides and their photo released products to well established but evolutionary and structurally unrelated nucleotide-binding proteins, rabbit muscle creatine kinase (RMCK) and human annexin A6 (hAnxA6), using saturation transfer difference NMR spectroscopy. We detect the binding of the caged nucleotides and discuss the general implications on interpreting data collected with photolysable caged ligands using different techniques. Strategies to avoid non-specific binding of caged compound to certain proteins are also suggestedThis work was supported in part by a Spain–France bilateral grant to R.B./J.C. funded by the Spanish Ministry of Science (HF2005-0276) and Égide (Picasso N 10715SA), by an exchange program sponsored by the Polish Academy of Sciences (2009-2010/5) and Fundação para a Ciência e a Tecnologia to S.P./P.G, and by grant N401 049 32/1143 to J.B-P. from the Polish Ministry of Science and Higher EducationPeer reviewe

    Localization of annexin A6 in matrix vesicles during physiological mineralization

    No full text
    Annexin A6 (AnxA6) is the largest member of the annexin family of proteins present in matrix vesicles (MVs). MVs are a special class of extracellular vesicles that serve as a nucleation site during cartilage, bone, and mantle dentin mineralization. In this study, we assessed the localization of AnxA6 in the MV membrane bilayer using native MVs and MV biomimetics. Biochemical analyses revealed that AnxA6 in MVs can be divided into three distinct groups. The first group corresponds to Ca2+-bound AnxA6 interacting with the inner leaflet of the MV membrane. The second group corresponds to AnxA6 localized on the surface of the outer leaflet. The third group corresponds to AnxA6 inserted in the membrane's hydrophobic bilayer and co-localized with cholesterol (Chol). Using monolayers and proteoliposomes composed of either dipalmitoylphosphatidylcholine (DPPC) to mimic the outer leaflet of the MV membrane bilayer or a 9:1 DPPC:dipalmitoylphosphatidylserine (DPPS) mixture to mimic the inner leaflet, with and without Ca2+, we confirmed that, in agreement with the biochemical data, AnxA6 interacted differently with the MV membrane. Thermodynamic analyses based on the measurement of surface pressure exclusion (πexc), enthalpy (ΔH), and phase transition cooperativity (Δt1/2) showed that AnxA6 interacted with DPPC and 9:1 DPPC:DPPS systems and that this interaction increased in the presence of Chol. The selective recruitment of AnxA6 by Chol was observed in MVs as probed by the addition of methyl-β-cyclodextrin (MβCD). AnxA6-lipid interaction was also Ca2+-dependent, as evidenced by the increase in πexc in negatively charged 9:1 DPPC:DPPS monolayers and the decrease in ΔH in 9:1 DPPC:DPPS proteoliposomes caused by the addition of AnxA6 in the presence of Ca2+ compared to DPPC zwitterionic bilayers. The interaction of AnxA6 with DPPC and 9:1 DPPC:DPPS systems was distinct even in the absence of Ca2+ as observed by the larger change in Δt1/2 in 9:1 DPPC:DPPS vesicles as compared to DPPC vesicles. Protrusions on the surface of DPPC proteoliposomes observed by atomic force microscopy suggested that oligomeric AnxA6 interacted with the vesicle membrane. Further work is needed to delineate possible functions of AnxA6 at its different localizations and ways of interaction with lipids
    corecore