478 research outputs found

    Global pointwise decay estimates for defocusing radial nonlinear wave equations

    Full text link
    We prove global pointwise decay estimates for a class of defocusing semilinear wave equations in n=3n=3 dimensions restricted to spherical symmetry. The technique is based on a conformal transformation and a suitable choice of the mapping adjusted to the nonlinearity. As a result we obtain a pointwise bound on the solutions for arbitrarily large Cauchy data, provided the solutions exist globally. The decay rates are identical with those for small data and hence seem to be optimal. A generalization beyond the spherical symmetry is suggested.Comment: 9 pages, 1 figur

    Quantization for an elliptic equation of order 2m with critical exponential non-linearity

    Full text link
    On a smoothly bounded domain Ω⊂R2m\Omega\subset\R{2m} we consider a sequence of positive solutions uk⇁w0u_k\stackrel{w}{\rightharpoondown} 0 in Hm(Ω)H^m(\Omega) to the equation (−Δ)muk=λkukemuk2(-\Delta)^m u_k=\lambda_k u_k e^{mu_k^2} subject to Dirichlet boundary conditions, where 0<λk→00<\lambda_k\to 0. Assuming that Λ:=lim⁥k→∞∫Ωuk(−Δ)mukdx<∞,\Lambda:=\lim_{k\to\infty}\int_\Omega u_k(-\Delta)^m u_k dx<\infty, we prove that Λ\Lambda is an integer multiple of \Lambda_1:=(2m-1)!\vol(S^{2m}), the total QQ-curvature of the standard 2m2m-dimensional sphere.Comment: 33 page

    Existence of solutions to a higher dimensional mean-field equation on manifolds

    Full text link
    For m≄1m\geq 1 we prove an existence result for the equation (−Δg)mu+λ=λe2mu∫Me2mudÎŒg(-\Delta_g)^m u+\lambda=\lambda\frac{e^{2mu}}{\int_M e^{2mu}d\mu_g} on a closed Riemannian manifold (M,g)(M,g) of dimension 2m2m for certain values of λ\lambda.Comment: 15 Page

    On Singularity formation for the L^2-critical Boson star equation

    Full text link
    We prove a general, non-perturbative result about finite-time blowup solutions for the L2L^2-critical boson star equation i∂tu=−Δ+m2 u−(∣x∣−1∗∣u∣2)ui\partial_t u = \sqrt{-\Delta+m^2} \, u - (|x|^{-1} \ast |u|^2) u in 3 space dimensions. Under the sole assumption that the solution blows up in H1/2H^{1/2} at finite time, we show that u(t)u(t) has a unique weak limit in L2L^2 and that ∣u(t)∣2|u(t)|^2 has a unique weak limit in the sense of measures. Moreover, we prove that the limiting measure exhibits minimal mass concentration. A central ingredient used in the proof is a "finite speed of propagation" property, which puts a strong rigidity on the blowup behavior of uu. As the second main result, we prove that any radial finite-time blowup solution uu converges strongly in L2L^2 away from the origin. For radial solutions, this result establishes a large data blowup conjecture for the L2L^2-critical boson star equation, similar to a conjecture which was originally formulated by F. Merle and P. Raphael for the L2L^2-critical nonlinear Schr\"odinger equation in [CMP 253 (2005), 675-704]. We also discuss some extensions of our results to other L2L^2-critical theories of gravitational collapse, in particular to critical Hartree-type equations.Comment: 24 pages. Accepted in Nonlinearit

    State-of-the-art glycosaminoglycan characterization

    Get PDF
    Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species

    Singular kernels, multiscale decomposition of microstructure, and dislocation models

    Full text link
    We consider a model for dislocations in crystals introduced by Koslowski, Cuiti\~no and Ortiz, which includes elastic interactions via a singular kernel behaving as the H1/2H^{1/2} norm of the slip. We obtain a sharp-interface limit of the model within the framework of Γ\Gamma-convergence. From an analytical point of view, our functional is a vector-valued generalization of the one studied by Alberti, Bouchitt\'e and Seppecher to which their rearrangement argument no longer applies. Instead we show that the microstructure must be approximately one-dimensional on most length scales and exploit this property to derive a sharp lower bound

    Shrinkers, expanders, and the unique continuation beyond generic blowup in the heat flow for harmonic maps between spheres

    Full text link
    Using mixed analytical and numerical methods we investigate the development of singularities in the heat flow for corotational harmonic maps from the dd-dimensional sphere to itself for 3≀d≀63\leq d\leq 6. By gluing together shrinking and expanding asymptotically self-similar solutions we construct global weak solutions which are smooth everywhere except for a sequence of times T1<T2<...<Tk<∞T_1<T_2<...<T_k<\infty at which there occurs the type I blow-up at one of the poles of the sphere. We show that in the generic case the continuation beyond blow-up is unique, the topological degree of the map changes by one at each blow-up time TiT_i, and eventually the solution comes to rest at the zero energy constant map.Comment: 24 pages, 8 figures, minor corrections, matches published versio

    On a functional satisfying a weak Palais-Smale condition

    Full text link
    In this paper we study a quasilinear elliptic problem whose functional satisfies a weak version of the well known Palais-Smale condition. An existence result is proved under general assumptions on the nonlinearities.Comment: 18 page

    Diffeomorphism-invariant properties for quasi-linear elliptic operators

    Full text link
    For quasi-linear elliptic equations we detect relevant properties which remain invariant under the action of a suitable class of diffeomorphisms. This yields a connection between existence theories for equations with degenerate and non-degenerate coerciveness.Comment: 16 page

    Rotational symmetry of self-similar solutions to the Ricci flow

    Full text link
    Let (M,g) be a three-dimensional steady gradient Ricci soliton which is non-flat and \kappa-noncollapsed. We prove that (M,g) is isometric to the Bryant soliton up to scaling. This solves a problem mentioned in Perelman's first paper.Comment: Final version, to appear in Invent. Mat
    • 

    corecore