14 research outputs found

    Vaccines and therapeutics for immunocompromised patients with COVID-19

    Get PDF
    The COVID-19 pandemic has disproportionately impacted immunocompromised patients. This diverse group is at increased risk for impaired vaccine responses, progression to severe disease, prolonged hospitalizations and deaths. At particular risk are people with deficiencies in lymphocyte number or function such as transplant recipients and those with hematologic malignancies. Such patients’ immune responses to vaccination and infection are frequently impaired leaving them more vulnerable to prolonged high viral loads and severe complications of COVID-19. Those in turn, have implications for disease progression and persistence, development of immune escape variants and transmission of infection. Data to guide vaccination and treatment approaches in immunocompromised people are generally lacking and extrapolated from other populations. The large clinical trials leading to authorisation and approval of SARS-CoV-2 vaccines and therapeutics included very few immunocompromised participants. While experience is accumulating, studies focused on the special circumstances of immunocompromised patients are needed to inform prevention and treatment approaches

    Safety and efficacy of oral fexinidazole in children with gambiense human African trypanosomiasis: a multicentre, single-arm, open-label, phase 2-3 trial

    Get PDF
    BACKGROUND: Fexinidazole has been reported as an effective oral monotherapy against non-severe gambiense human African trypanosomiasis in a recent trial in adults. We aimed to assess the safety and efficacy of fexinidazole in children across all disease stages of gambiense human African trypanosomiasis. METHODS: We did a multicentre, single-arm, open-label, phase 2-3 trial at eight district hospitals in the Democratic Republic of the Congo. We recruited children with a Karnofsky score of more than 50, those aged 6 years to younger than 15 years, weighing 20 kg or more, and with confirmed gambiense human African trypanosomiasis (any stage). Children weighing 20 kg or more and less than 35 kg received oral fexinidazole of 1200 mg (two x 600 mg tablets) once per day for 4 days (days 1-4) followed by 600 mg (one x 600 mg tablet) once per day for 6 days (days 5-10). Children weighing 35 kg or more received oral fexinidazole of 1800 mg (three x 600 mg tablets) once per day for 4 days (days 1-4), followed by 1200 mg (two x 600 mg tablets) once per day for 6 days (days 5-10). The primary endpoint was fexinidazole treatment success rate 12 months after end of treatment. A rate greater than 80% was deemed acceptable and a target value of 92% was aimed for. Safety was assessed through routine monitoring. This study is completed and registered with ClinicalTrials.gov, number NCT02184689. FINDINGS: Between May 3, 2014, and Nov 22, 2016, we screened a total of 130 paediatric patients, of whom 125 (96%) received at least one dose of fexinidazole. All 125 patients (69 [55%] patients with stage 1, 19 [15%] with early stage 2, and 37 [30%] with late stage 2 gambiense human African trypanosomiasis) completed the 10-day treatment. Treatment success rate at 12 months was 97.6% (95% CI 93.1-99.5; 122 of 125 patients). The primary endpoint was met and the targeted value of 92% was exceeded. Treatment success at 12 months was elevated across all disease stages: 98.6% (95% CI 92.2-99.9; 68 of 69 patients) in stage 1, 94.7% (74.0-99.9; 18 of 19 patients) in early stage 2, and 97.3% (85.8-99.9; 36 of 37 patients) in late stage 2 gambiense human African trypanosomiasis. No new safety issues were observed beyond those found in adult trials. Overall, 116 (93%) of 125 patients reported 586 treatment-emergent adverse events, mainly mild or moderate. The most frequently reported treatment-emergent adverse events of interest during hospital admission were vomiting (86 [69%] of 125) and headache (41 [33%]). Seven (6%) of 125 patients had severe malaria, which was often accompanied by anaemia that was unrelated to fexinidazole. One patient died following dyspnoea and injury due to traumatic aggression 172 days after end of treatment, which was considered unrelated to fexinidazole or gambiense human African trypanosomiasis. INTERPRETATION: Oral fexinidazole is a safe and effective first-line treatment option across all gambiense human African trypanosomiasis disease stages in paediatric patients. FUNDING: Through the Drugs for Neglected Diseases initiative: the Bill & Melinda Gates Foundation (USA), the Republic and Canton of Geneva (Switzerland), the Dutch Ministry of Foreign Affairs (Netherlands), the Norwegian Agency for Development Cooperation (Norway), the Federal Ministry of Education and Research through KfW (Germany), the Brian Mercer Charitable Trust (UK), and other private foundations and individuals from the human African trypanosomiasis campaign. TRANSLATION: For the French translation of the abstract see Supplementary Materials section

    Oral fexinidazole for stage 1 or early stage 2 African Trypanosoma brucei gambiense trypanosomiasis: a prospective, multicentre, open-label, cohort study

    Get PDF
    BACKGROUND: Staging and treatment of human African trypanosomiasis caused by Trypanosoma brucei gambiense (g-HAT) required lumbar puncture to assess cerebrospinal fluid (CSF) and intravenous drugs that cross the blood-brain barrier for late-stage infection. These procedures are inconvenient in rural health systems of disease-endemic countries. A pivotal study established fexinidazole as the first oral monotherapy to be effective against non-severe stage 2 g-HAT. We aimed to assess the safety and efficacy of fexinidazole in early g-HAT. METHODS: In this prospective, multicentre, open-label, single-arm cohort study, patients with stage 1 or early stage 2 g-HAT were recruited from eight treatment centres in the Democratic Republic of the Congo. Primary inclusion criteria included being older than 15 years, being able to ingest at least one complete meal per day (or at least one sachet of Plumpy'NutŸ), a Karnofsky score higher than 50, evidence of trypanosomes in the blood or lymph but no evidence of trypanosomes in the CSF, willingness to be admitted to hospital to receive treatment, having a permanent address, and being able to comply with the follow-up visit schedule. Exclusion criteria included severe malnutrition, inability to take medication orally, pregnant or breastfeeding women, any clinically important medical condition that could jeopardise patient safety or participation in the study, severely deteriorated general status, any contraindication to imidazole drugs, HAT treatment in the past 2 years, previous enrolment in the study or previous intake of fexinidazole, abnormalities on electrocardiogram that did not return to normal in pretreatment repeated assessments or were considered clinically important, QT interval corrected using Fridericia's formula of at least 450 ms, and patients not tested for malaria or not having received appropriate treatment for malaria or for soil-transmitted helminthiasis. Patients were classified into stage 1 or early stage 2 g-HAT groups following evidence of trypanosomes in the blood, lymph, and absence in CSF, and using white-blood-cell count in CSF. Patients received 1800 mg fexinidazole once per day on days 1-4 then 1200 mg fexinidazole on days 5-10. Patients were observed for approximately 19 months in total. Study participants were followed up on day 5 and day 8 during treatment, at end of treatment on day 11, at end of hospitalisation on days 11-18, at week 9 for a subset of patients, and after 6 months, 12 months, and 18 months. The primary endpoint was treatment success at 12 months. Safety was assessed through routine monitoring. Analyses were done in the intention-to-treat population. The acceptable success rate was defined as treatment efficacy in more than 80% of patients. This study is completed and registered with ClinicalTrials.gov (NCT02169557). FINDINGS: Patients were enrolled between April 30, 2014, and April 25, 2017. 238 patients were recruited: 195 (82%) patients with stage 1 g-HAT and 43 (18%) with early stage 2 g-HAT. 189 (97%) of 195 patients with stage 1 g-HAT and 41 (95%) of 43 patients with early stage 2 g-HAT were finally included and completed the 10 day treatment period. Three patients with stage 1 g-HAT died after the 10 day treatment period and before the 12 month primary follow-up visit, considered as treatment failure and were withdrawn from the study. Treatment was effective at 12 months for 227 (99%) of 230 patients (95% CI 96·2-99·7): 186 (98%) of 189 patients (95·4-99·7) with stage 1 and 41 (100%) of 41 patients (91·4-100·0) with early stage 2, indicating that the primary study endpoint was met. No new safety issues were observed. The most frequent adverse events were headache and vomiting. In total, 214 (93%) of 230 patients had treatment-emergent adverse events, mainly common-terminology criteria for adverse events grades 1 to 3. None led to treatment discontinuation. INTERPRETATION: Fexinidazole is a valuable first-line treatment option in the early stages of g-HAT. FUNDING: Through the Drugs for Neglected Diseases initiative: the Bill & Melinda Gates Foundation, the Republic and Canton of Geneva (Switzerland), the Dutch Ministry of Foreign Affairs (also known as DGIS; Netherlands), the Norwegian Agency for Development Cooperation (also known as Norad; Norway), the Federal Ministry of Education and Research (also known as BMBF) through KfW (Germany), the Brian Mercer Charitable Trust (UK), and other private foundations and individuals from the HAT campaign

    Efficacy and safety of acoziborole in patients with human African trypanosomiasis caused by Trypanosoma brucei gambiense: a multicentre, open-label, single-arm, phase 2/3 trial

    Get PDF
    Summary Background Human African trypanosomiasis caused by Trypanosoma brucei gambiense (gambiense HAT) in patients with late-stage disease requires hospital admission to receive nifurtimox-eflornithine combination therapy (NECT). Fexinidazole, the latest treatment that has been recommended by WHO, also requires systematic admission to hospital, which is problematic in areas with few health-care resources. We aim to assess the safety and efficacy of acoziborole in adult and adolescent patients with gambiense HAT. Methods This multicentre, prospective, open-label, single-arm, phase 2/3 study recruited patients aged 15 years or older with confirmed gambiense HAT infection from ten hospitals in the Democratic Republic of the Congo and Guinea. Inclusion criteria included a Karnofsky score less than 50, ability to swallow tablets, a permanent address or traceability, ability to comply with follow-up visits and study requirements, and agreement to hospital admission during treatment. Oral acoziborole was administered as a single 960 mg dose (3 × 320 mg tablets) to fasted patients. Patients were observed in hospital until day 15 after treatment administration then for 18 months as outpatients with visits at 3, 6, 12, and 18 months. The primary efficacy endpoint was the success rate of acoziborole treatment at 18 months in patients with late-stage gambiense HAT (modified intention-to-treat [mITT] population), based on modified WHO criteria. A complementary post-hoc analysis comparing the 18-month success rates for acoziborole and NECT (using historical data) was performed. This study is registered at ClinicalTrials.gov, NCT03087955. Findings Between Oct 11, 2016, and March 25, 2019, 260 patients were screened, of whom 52 were ineligible and 208 were enrolled (167 with late-stage and 41 with early-stage or intermediate-stage gambiense HAT; primary efficacy analysis set). All 41 (100%) patients with early-stage or intermediate-stage and 160 (96%) of 167 with late-stage disease completed the last 18-month follow-up visit. The mean age of participants was 34·0 years (SD 12·4), including 117 (56%) men and 91 (44%) women. Treatment success rate at 18 months was 95·2% (95% CI 91·2-97·7) reached in 159 of 167 patients with late-stage gambiense HAT (mITT population) and 98·1% (95·1-99·5) reached in 159 of 162 patients (evaluable population). Overall, 155 (75%) of 208 patients had 600 treatment-emergent adverse events. A total of 38 drug-related treatment-emergent adverse events occurred in 29 (14%) patients; all were mild or moderate and most common were pyrexia and asthenia. Four deaths occurred during the study; none were considered treatment related. The post-hoc analysis showed similar results to the estimated historical success rate for NECT of 94%. Interpretation Given the high efficacy and favourable safety profile, acoziborole holds promise in the efforts to reach the WHO goal of interrupting HAT transmission by 2030. Funding Bill & Melinda Gates Foundation, UK Aid, Federal Ministry of Education and Research, Swiss Agency for Development and Cooperation, MĂ©decins Sans FrontiĂšres, Dutch Ministry of Foreign Affairs, Norwegian Agency for Development Cooperation, Norwegian Ministry of Foreign Affairs, the Stavros Niarchos Foundation, Spanish Agency for International Development Cooperation, and the Banco Bilbao Vizcaya Argentaria Foundation. Translation For the French translation of the abstract see Supplementary Materials section

    The fragmented COVID-19 therapeutics research landscape: a living systematic review of clinical trial registrations evaluating priority pharmacological interventions. [version 1; peer review: 1 approved]

    Get PDF
    Background: Many available medicines have been evaluated as potential repurposed treatments for coronavirus disease 2019 (COVID-19). We summarise the registered study landscape for 32 priority pharmacological treatments identified following consultation with external experts of the COVID-19 Clinical Research Coalition. Methods: All eligible trial registry records identified by systematic searches of the World Health Organisation International Clinical Trials Registry Platform as of 26th May 2021 were reviewed and extracted. A descriptive summary of study characteristics was performed. Results: We identified 1,314 registered studies that included at least one of the 32 priority pharmacological interventions. The majority (1,043, 79%) were randomised controlled trials (RCTs). The sample size of the RCTs identified was typically small (median (25th, 75th percentile) sample size = 140 patients (70, 383)), i.e. individually powered only to show very large effects. The most extensively evaluated medicine was hydroxychloroquine (418 registered studies). Other widely studied interventions were convalescent plasma (n=208), ritonavir (n=189) usually combined with lopinavir (n=181), and azithromycin (n=147). Very few RCTs planned to recruit participants in low-income countries (n=14; 1.3%). A minority of studies (348, 26%) indicated a willingness to share individual participant data. The living systematic review data are available at https://iddo.cognitive.city Conclusions: There are many registered studies planning to evaluate available medicines as potential repurposed treatments of COVID-19. Most of these planned studies are small, and therefore substantially underpowered for most relevant endpoints. Very few are large enough to have any chance of providing enough convincing evidence to change policies and practices. The sharing of individual participant data (IPD) from these studies would allow pooled IPD meta-analyses which could generate definitive conclusions, but most registered studies did not indicate that they were willing to share their data

    Haematological consequences of acute uncomplicated falciparum malaria: a WorldWide Antimalarial Resistance Network pooled analysis of individual patient data

    Get PDF
    Background: Plasmodium falciparum malaria is associated with anaemia-related morbidity, attributable to host, parasite and drug factors. We quantified the haematological response following treatment of uncomplicated P. falciparum malaria to identify the factors associated with malarial anaemia. Methods: Individual patient data from eligible antimalarial efficacy studies of uncomplicated P. falciparum malaria, available through the WorldWide Antimalarial Resistance Network data repository prior to August 2015, were pooled using standardised methodology. The haematological response over time was quantified using a multivariable linear mixed effects model with nonlinear terms for time, and the model was then used to estimate the mean haemoglobin at day of nadir and day 7. Multivariable logistic regression quantified risk factors for moderately severe anaemia (haemoglobin < 7 g/dL) at day 0, day 3 and day 7 as well as a fractional fall ≄ 25% at day 3 and day 7. Results: A total of 70,226 patients, recruited into 200 studies between 1991 and 2013, were included in the analysis: 50,859 (72.4%) enrolled in Africa, 18,451 (26.3%) in Asia and 916 (1.3%) in South America. The median haemoglobin concentration at presentation was 9.9 g/dL (range 5.0–19.7 g/dL) in Africa, 11.6 g/dL (range 5.0–20.0 g/dL) in Asia and 12.3 g/dL (range 6.9–17.9 g/dL) in South America. Moderately severe anaemia (Hb < 7g/dl) was present in 8.4% (4284/50,859) of patients from Africa, 3.3% (606/18,451) from Asia and 0.1% (1/916) from South America. The nadir haemoglobin occurred on day 2 post treatment with a mean fall from baseline of 0.57 g/dL in Africa and 1.13 g/dL in Asia. Independent risk factors for moderately severe anaemia on day 7, in both Africa and Asia, included moderately severe anaemia at baseline (adjusted odds ratio (AOR) = 16.10 and AOR = 23.00, respectively), young age (age < 1 compared to ≄ 12 years AOR = 12.81 and AOR = 6.79, respectively), high parasitaemia (AOR = 1.78 and AOR = 1.58, respectively) and delayed parasite clearance (AOR = 2.44 and AOR = 2.59, respectively). In Asia, patients treated with an artemisinin-based regimen were at significantly greater risk of moderately severe anaemia on day 7 compared to those treated with a non-artemisinin-based regimen (AOR = 2.06 [95%CI 1.39–3.05], p < 0.001). Conclusions: In patients with uncomplicated P. falciparum malaria, the nadir haemoglobin occurs 2 days after starting treatment. Although artemisinin-based treatments increase the rate of parasite clearance, in Asia they are associated with a greater risk of anaemia during recovery

    The consequence of COVID-19 on the global supply of medical products: Why Indian generics matter for the world?

    No full text
    While the world is facing the urgency of the COVID-19 pandemic, policymakers must plan for the direct response to the outbreak while minimising its collateral impact. Maintaining the supply chain of pharmaceutical products is not only paramount to cover the immediate medical response but will be fundamental to reducing disruption of the healthcare delivery system, which requires constant medicines, diagnostic tools and vaccines for smooth functioning. In this equation, the role of the Indian pharmaceutical industry will not only be critical to meet the domestic need of over 1.3 billion inhabitants but will equally be important for the rest of the world, including wealthy economies. Preventing a significant disruption of the Indian pharmaceutical supply chain during the outbreak and preparing it for large scale production for COVID-19 therapeutic or preventive medical products will not only help India but will assist the global response to this outbreak

    Definitions matter: heterogeneity of COVID-19 disease severity criteria and incomplete reporting compromise meta-analysis

    No full text
    Therapeutic efficacy in COVID-19 is dependent upon disease severity (treatment effect heterogeneity). Unfortunately, definitions of severity vary widely. This compromises the meta-analysis of randomised controlled trials (RCTs) and the therapeutic guidelines derived from them. The World Health Organisation ‘living’ guidelines for the treatment of COVID-19 are based on a network meta-analysis (NMA) of published RCTs. We reviewed the 81 studies included in the WHO COVID-19 living NMA and compared their severity classifications with the severity classifications employed by the international COVID-NMA initiative. The two were concordant in only 35% (24/68) of trials. Of the RCTs evaluated, 69% (55/77) were considered by the WHO group to include patients with a range of severities (12 mild-moderate; 3 mild-severe; 18 mild-critical; 5 moderate-severe; 8 moderate-critical; 10 severe-critical), but the distribution of disease severities within these groups usually could not be determined, and data on the duration of illness and/or oxygen saturation values were often missing. Where severity classifications were clear there was substantial overlap in mortality across trials in different severity strata. This imprecision in severity assessment compromises the validity of some therapeutic recommendations; notably extrapolation of “lack of therapeutic benefit” shown in hospitalised severely ill patients on respiratory support to ambulant mildly ill patients is not warranted. Both harmonised unambiguous definitions of severity and individual patient data (IPD) meta-analyses are needed to guide and improve therapeutic recommendations in COVID-19. Achieving this goal will require improved coordination of the main stakeholders developing treatment guidelines and medicine regulatory agencies. Open science, including prompt data sharing, should become the standard to allow IPD meta-analyses
    corecore