8 research outputs found

    Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass‐loss rate and stabilization

    Get PDF
    The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models

    Reading tea leaves worldwide: decoupled drivers of initial litter decomposition mass‐loss rate and stabilization

    Get PDF
    The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large‐scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass‐loss rates and stabilization factors of plant‐derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy‐to‐degrade components accumulate during early‐stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass‐loss rates and stabilization, notably in colder locations. Using TBI improved mass‐loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early‐stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models

    Influence of Direct Thermal Analysis Experimental Conditions on Determination of the High Temperature Phase Transformation Temperatures / Wpływ Warunków Prowadzenia Bezpośredniej Analizy Termicznej Na Określenie Temperatur Wysoko Temperaturowych Przemian Fazowych

    No full text
    Thermo-physical and thermodynamic properties of metallic systems represent some of the most important data that allows to describe their behaviour under strictly specified conditions. These data are the basic, input data for simulative programs, which can model this behaviour and they can be applied to real conditions. Method of direct thermal analysis is the one of the methods of enabling to obtain such data. This paper deals with application of this method on particular sample of pure standard material. The experimental laboratory system for thermal analysis Netzsch STA 449 F3 Jupiter was used for experimental measurements. This paper is studying the influence of experimental conditions on the obtained temperature of phase transformations and on shift of phase transformation temperatures with respect to the monitored experimental conditions, accuracy and credibility of the measured data. Acquired values of this data could be significantly influenced by experimental conditions, size (mass) of samples, purity of inert atmosphere and also by regimes of controlled heating and cooling rates

    Porównanie temperatur solidus i likwidus stali niskowęglowej uzyskanych za pomocą metod analizy termicznej

    No full text
    Praca dotyczy badania temperatur przemian fazowych (temperatur solidus i likwidus) z użyciem różnych metod analizy termicznej. Obecnie kluczowymi metodami analizy termicznej są: różnicowa analiza termiczna DTA, skaningowa kalorymetria różnicowa oraz „bezpośrednia” analiza termiczna TA. Praca przedstawia podstawowe zasady, charakterystykę, zalety, wady i wyniki uzyskane przy użyciu tych trzech, bardzo często stosowanych metod. Przedstawiono wyniki z zakresu wysokiej temperatury (powyżej 1000°C) z naciskiem na zakres topnienia i krzepnięcia stali. Omówiono wyniki uzyskane przy zastosowaniu wspomnianych metod podczas procesu nagrzewania/chłodzenia, z uwzględnieniem różnych obciążeń analizowanych próbek i innych czynników, które mogą wpływać na uzyskane wyniki. Podano ocenę krzywych nagrzewanie/chłodzenie DTA i DSC. Porównano i omówiono uzyskane temperatury solidus i likwidus.The paper deals with the study of phase transition temperatures (solidus and liquidus temperatures) with the use of different thermal analysis methods. Currently, the key thermal analysis methods are DTA (Differential Thermal Analysis), DSC (Differential Scanning Calorimetry) and ‘direct’ thermal analysis (TA). The study presents the basic principles of these methods, their characteristics, advantages, disadvantages and results obtained with these three very often used methods. There paper presents results from the high temperature region (above 1000°C) with the focus on the melting and solidifying region of real steel grade – multicomponent alloy. The paper discusses results obtained with the three mentioned methods at heating/cooling process, with different loads of analysed samples and other factors that can influence the obtained results. The evaluation of heating/cooling curves, DTA and DSC – curves at heating and cooling is demonstrated. The obtained solidus and liquidus temperatures are compared and discussed

    Engineering the acceptor substrate specificity in the xyloglucan endotransglycosylase TmXET6.3 from nasturtium seeds (Tropaeolum majus L.)

    No full text
    Xyloglucan xyloglucosyl transferases (XETs) (EC 2.4.1.207) play a central role in loosening and re-arranging the cellulose-xyloglucan network, which is assumed to be the primary load-bearing structural component of plant cell walls. The full-length sequence of mature TmXET6.3 from Tropaeolum majus (280 residues) was deduced by the nucleotide sequence analysis of near full-length cDNA by Rapid Amplification of cDNA Ends, based on tryptic and chymotryptic peptide sequences. Partly purified TmXET6.3, expressed in Pichia occurred in N-glycosylated and N-deglycosylated forms. The quantification of hetero-transglycosylation activities of TmXET6.3 revealed that (1,3;1,4)-, (1,6)- and (1,4)-β-D-glucooligosaccharides were the preferred acceptor substrates, while (1,4)-β-D-xylooligosaccharides, and arabinoxylo- and glucomanno-oligosaccharides were less preferred. The 3D model of TmXET6.3, and bioinformatics analyses of identified and putative plant xyloglucan endotransglycosylases (XETs)/hydrolases (XEHs) of the GH16 family revealed that H94, A104, Q108, K234 and K237 were the key residues that underpinned the acceptor substrate specificity of TmXET6.3. Compared to the wild-type enzyme, the single Q108R and K237T, and double-K234T/K237T and triple-H94Q/A104D/Q108R variants exhibited enhanced hetero-transglycosylation activities with xyloglucan and (1,4)-β-D-glucooligosaccharides, while those with (1,3;1,4)- and (1,6)-β-D-glucooligosaccharides were suppressed; the incorporation of xyloglucan to (1,4)-β-D-glucooligosaccharides by the H94Q variant was influenced most extensively. Structural and biochemical data of non-specific TmXET6.3 presented here extend the classic XET reaction mechanism by which these enzymes operate in plant cell walls. The evaluations of TmXET6.3 transglycosylation activities and other members of the GH16 family suggested that a broad acceptor substrate specificity in plant XET enzymes could be more widespread than previously anticipated.Barbora Stratilová, Zuzana Firáková, Jaroslav Klaudiny; Sergej Šesták, Stanislav Kozmon, Dana Strouhalová, Soňa Garajová, Fairouz Ait‑Mohand, Ágnes Horváthová, Vladimír Farkaš, Eva Stratilová, Maria Hrmov

    Reading tea leaves worldwide : decoupled drivers of initial litter decomposition mass-loss rate and stabilization

    No full text
    The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models
    corecore