387 research outputs found
A novel brain receptor is expressed in a distinct population of olfactory sensory neurons
Three novel G-protein-coupled receptor genes related to the previously described RA1c gene have been isolated from the mouse genome. Expression of these genes has been detected in distinct areas of the brain and also in the olfactory epithelium of the nose. Developmental studies revealed a differential onset of expression: in the brain at embryonic stage 17, in the olfactory system at stage E12. In order to determine which cell type in the olfactory epithelium expresses this unique receptor type, a transgenic approach was employed which allowed a coexpression of histological markers together with the receptor and thus visualization of the appropriate cell population. It was found that the receptor-expressing cells were located very close to the basal membrane of the epithelium; however, the cells extended a dendritic process to the epithelial surface and their axons projected into the main olfactory bulb where they converged onto two or three glomeruli in the dorsal and posterior region of the bulb. Thus, these data provide evidence that this unique type of receptor is expressed in mature olfactory neurons and suggests that it may be involved in the detection of special odour molecules
Health warning: might contain multiple personalities - the problem of homonyms in Thomson Reuters Essential Science Indicators
Author name ambiguity is a crucial problem in any type of bibliometric analysis. It arises when several authors share the same name, but also when one author expresses their name in different ways. This article focuses on the former, also called the “namesake” problem. In particular, we assess the extent to which this compromises the Thomson Reuters Essential Science Indicators (ESI) ranking of the top 1% most cited authors worldwide. We show that three demographic characteristics that should be unrelated to research productivity – name origin, uniqueness of one’s family name, and the number of initials used in publishing – in fact have a very strong influence on it.
In contrast to what could be expected from Web of Science publication data, researchers with Asian names – and in particular Chinese and Korean names – appear to be far more productive than researchers with Western names. Furthermore, for any country, academics with common names and fewer initials also appear to be more productive than their more uniquely named counterparts. However, this appearance of high productivity is caused purely by the fact that these “academic superstars” are in fact composites of many individual academics with the same name. We thus argue that it is high time that Thomson Reuters starts taking name disambiguation in general, and non-Anglophone names in particular, more seriously
β-lapachone regulates mammalian inositol pyrophosphate levels in an NQO1- and oxygen-dependent manner
Inositol pyrophosphates (PP-InsPs) are energetic signaling molecules with important functions in mammals. As their biosynthesis depends on ATP concentration, PP-InsPs are tightly connected to cellular energy homeostasis. Consequently, an increasing number of studies involve PP-InsPs in metabolic disorders, such as type 2 diabetes, aspects of tumorigenesis, and hyperphosphatemia. Research conducted in yeast suggests that the PP-InsP pathway is activated in response to reactive oxygen species (ROS). However, the precise modulation of PP-InsPs during cellular ROS signaling is unknown. Here, we report how mammalian PP-InsP levels are changing during exposure to exogenous (H
2
O
2
) and endogenous ROS. Using capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS), we found that PP-InsP levels decrease upon exposure to oxidative stressors in HCT116 cells. Application of quinone drugs, particularly β-lapachone (β-lap), under normoxic and hypoxic conditions enabled us to produce ROS in cellulo and to show that β-lap treatment caused PP-InsP changes that are oxygen-dependent. Experiments in MDA-MB-231 breast cancer cells deficient of NAD(P)H:quinone oxidoreductase-1 (NQO1) demonstrated that β-lap requires NQO1 bioactivation to regulate the cellular metabolism of PP-InsPs. Critically, significant reductions in cellular ATP concentrations were not directly mirrored in reduced PP-InsP levels as shown in NQO1-deficient MDA-MB-231 cells treated with β-lap. The data presented here unveil unique aspects of β-lap pharmacology and its impact on PP-InsP levels. The identification of different quinone drugs as modulators of PP-InsP synthesis will allow the overall impact on cellular function of such drugs to be better appreciated
Increased Basal Activity Is a Key Determinant in the Severity of Human Skeletal Dysplasia Caused by TRPV4 Mutations
TRPV4 is a mechanically activated Ca2+-passing channel implicated in the sensing of forces, including those acting on bones. To date, 33 mutations are known to affect human bone development to different extents. The spectrum of these skeletal dysplasias (SD) ranges from dominantly inherited mild brachylomia (BO) to neonatal lethal forms of metatropic dysplasia (MD). Complexities of the results from fluorescence and electrophysiological studies have led to questions on whether channel activity is a good predictor of disease severity. Here we report on a systematic examination of 14 TRPV4 mutant alleles covering the entire SD spectrum. Expressed in Xenopus oocyte and without any stimulation, the wild-type channel had a ∼1% open probability (Po) while those of most of the lethal MD channels approached 100%. All mutant channels had higher basal open probabilities, which limited their further increase by agonist or hypotonicity. The magnitude of this limitation revealed a clear correlation between the degree of over-activity (the molecular phenotype) and the severity of the disease over the entire spectrum (the biological phenotype). Thus, while other factors are at play, our results are consistent with the increased TRPV4 basal activity being a critical determinant of the severity of skeletal dysplasia. We discuss how the channel over-activity may lead to the “gain-of-function” phenotype and speculate that the function of wild-type TRPV4 may be secondary in normal bone development but crucial in an acute process such as fracture repair in the adult
Interdomain Interactions Control Ca2+-Dependent Potentiation in the Cation Channel TRPV4
Several Ca2+-permeable channels, including the non-selective cation channel TRPV4, are subject to Ca2+-dependent facilitation. Although it has been clearly demonstrated in functional experiments that calmodulin (CaM) binding to intracellular domains of TRP channels is involved in this process, the molecular mechanism remains elusive. In this study, we provide experimental evidence for a comprehensive molecular model that explains Ca2+-dependent facilitation of TRPV4. In the resting state, an intracellular domain from the channel N terminus forms an autoinhibitory complex with a C-terminal domain that includes a high-affinity CaM binding site. CaM binding, secondary to rises in intracellular Ca2+, displaces the N-terminal domain which may then form a homologous interaction with an identical domain from a second subunit. This represents a novel potentiation mechanism that may also be relevant in other Ca2+-permeable channels
BDNF-Live-Exon-Visualization (BLEV) Allows Differential Detection of BDNF Transcripts in vitro and in vivo
Bdnf exon-IV and exon-VI transcripts are driven by neuronal activity and are involved in pathologies related to sleep, fear or memory disorders. However, how their differential transcription translates activity changes into long-lasting network changes is elusive. Aiming to trace specifically the network controlled by exon-IV and -VI derived BDNF during activity-dependent plasticity changes, we generated a transgenic reporter mouse for BDNF-live-exon-visualization (BLEV), in which expression of Bdnf exon-IV and -VI can be visualized by co-expression of CFP and YFP. CFP and YFP expression was differentially activated and targeted in cell lines, primary cultures and BLEV reporter mice without interfering with BDNF protein synthesis. CFP and YFP expression, moreover, overlapped with BDNF protein expression in defined hippocampal neuronal, glial and vascular locations in vivo. So far, activity-dependent BDNF cannot be explicitly monitored independent of basal BDNF levels. The BLEV reporter mouse therefore provides a new model, which can be used to test whether stimulus-induced activity-dependent changes in BDNF expression are instrumental for long-lasting plasticity modifications
- …