587 research outputs found

    Fungal Remediation and Subsequent Methanogenic Digestion of Sixteen Winery Wastewaters

    Get PDF
    Sixteen winery wastewaters were partially characterised during peak wine production. Raw wastewaters were inoculated withTrametes pubescens MB 89 to establish whether a submerged culture could be used to treat winery wastewaters, and whetherfungally-treated wastewater would be rendered more degradable by secondary biological treatment using methanogenic bacteria.Additionally, laccase activity was monitored during the treatment to determine if phenolic compounds present in the wastewaterwould stimulate the synthesis of the fungal enzyme. Fungal treatment using T. pubescens MB 89 lowered the chemical oxygendemand (COD) and increased the acidic pH values of all wastewater samples. Five of the wastewater samples showed an increasein laccase synthesis, but the concentrations were low and did not relate to any individual characteristic that was assayed for.It proved advantageous to methanogenic digestion to fungally pretreat samples that had higher initial phenolic compound andcolour concentrations, but disadvantageous for wastewaters with low initial phenolic compound and colour concentrations.Anaerobic digestion of fungally-treated and raw samples generally showed little difference with regard to total COD removaland final pH. The incorporation of white-rot fungus into a pretreatment process such as a jet loop reactor or rotating biologicaldisc contactor could prove to be highly advantageous to cellar wastewater treatment

    Treatment of Wine Distillery Wastewater: A Review with Emphasis on Anaerobic Membrane Reactors

    Get PDF
    This review summarises research efforts and case studies in the treatment of wine distillery wastewaters.Experiences in treating wine distillery wastewaters can contribute to the field of oenology, as many oenologists areconcerned with the selection, efficiency and economy of their wastewaters. Characteristics of wastewaters fromdifferent distilleries and various methods for treating these wastes are discussed. Wine distillery wastewaters arestrongly acidic, have a high chemical oxygen demand, high polyphenol content and are highly variable. Primaryattention is focused on the sustainable biological treatment of wine distillery wastewaters, mainly by energyefficientanaerobic digestion in different reactor configurations from bench to pilot and full-scale treatment. Finally,areas where further research and attention are required are identified

    Improving cycle corrections in discrete time Markov models : a Gaussian quadrature approach

    Get PDF
    Introduction: Discrete-time Markov models are widely used within health economic modelling. Analyses usually associate costs and health outcomes with health states and calculate totals for each decision option over some timeframe. Frequently, a correction method (e.g. half-cycle correction) is applied to unadjusted model outputs to yield an approximation to an assumed underlying continuous-time Markov model. In this study, we introduce a novel approximation method based on Gaussian Quadrature (GQ). Methods: We exploited analytical results for time-homogeneous Markov chains to derive a new GQ-based approximation, which is applied to an unadjusted discrete-time model output. The GQ method approximates a continuous-time Markov model result by approximating a correction matrix, formulated as an integral, using a weighted sum of integrand values at specified points. GQ approximations can be made arbitrarily accurate by increasing order of the approximation. We compared the first five orders of GQ approximation with four existing cycle correction methods (half-cycle correction, trapezoidal and Simpson 1/3 and 3/8 rules) across 100,000 randomly generated input parameter-sets. Results: We show that first-order GQ method is identical to half-cycle correction method, which is itself equivalent to trapezoidal method. The second-order GQ is identical to Simpson 1/3 method. The third, fourth and fifth order GQ methods are novel in this context and provide increasingly accurate approximations to the output of the continuous-time model. In our simulation study, fifth-order GQ method outperformed other existing methods in over 99.8% of simulations. Of the existing methods, Simpson 1/3 rule performed the best. Conclusion: Our novel GQ-based approximation outperforms other cycle correction methods for time-homogeneous models. The method is easy to implement, and R code and an Excel workbook are provided as supplementary materials

    Does participation in a pain course based on the international association for the study of pain's curricula guidelines change student knowledge about pain?

    Get PDF
    The People in Pain course was set up as a joint initiative of the Departments of Occupational Therapy and Physiotherapy within the School of Health and Rehabilitation Sciences at The University of Queensland. It was instigated in response to the publication of Pain Curricula for Occupational Therapy and Physiotherapy by the International Association for the Study of Pain (IASP) in 1994 (1). The first year it was offered, the "People in Pain" course comprised 14 h of lecture content. It was then expanded to encompass 28 h of lectures and seminar involvement. OBJECTIVES: To evaluate the impact of participation in a university pain course that meets the IASP pain curricula guidelines to increase health professional students' knowledge about pain. METHODS: Students who participated in the People in Pain course over the first three years were invited to complete the Revised Pain Knowledge and Attitudes Questionnaire (R-PKAQ) pre- and postcourse. Data obtained from 22 students in the short course formed a pilot project, and data from 22 students in the longer version of the course were used in the present study. RESULTS: Examination of the correlation matrix indicated substantial correlations between all R-PKAQ subscales except physiological basis of pain and pharmacological management of pain. In both the pilot project during the first year of the course and the expanded course in the following two years, significant improvement was found in the students' knowledge on five of the six subscales of the R-PKAQ: physiological basis of pain, psychological factors of pain perception, assessment and measurement of pain, cognitive-behavioural methods of pain relief, and pharmacological management of pain. Improvements in the developmental aspects of pain perception subscale failed to reach significance. CONCLUSIONS: An integrated pain course developed according to the pain curriculum guidelines developed by the IASP resulted in increased student knowledge regardless of the length of the program attended

    ATIC and PAMELA Results on Cosmic e^\pm Excesses and Neutrino Masses

    Get PDF
    Recently the ATIC and PAMELA collaborations released their results which show the abundant e^\pm excess in cosmic rays well above the background, but not for the \bar{p}. Their data if interpreted as the dark matter particles' annihilation imply that the new physics with the dark matter is closely related to the lepton sector. In this paper we study the possible connection of the new physics responsible for the cosmic e^\pm excesses to the neutrino mass generation. We consider a class of models and do the detailed numerical calculations. We find that these models can natually account for the ATIC and PAMELA e^\pm and \bar{p} data and at the same time generate the small neutrino masses.Comment: 7 pages, 5 figures. Published version with minor corrections and more reference

    Evaluating a novel cervical orthosis, the Sheffield Support Snood, in patients with amyotrophic lateral sclerosis/motor neuron disease with neck weakness

    Get PDF
    Current practice and guidelines recommend the use of neck orthoses for people with amyotrophic lateral sclerosis (ALS) to compensate for neck weakness and to provide surrogate neck control. However, available options are frequently described by patients as restrictive and unsuitable and there was a need for a new device that addressed the needs of people with ALS. This project utilized a co-design process to develop a new neck orthosis that was more flexible yet supportive. Following development of a prototype device, a mixed methods cohort study was undertaken with patients and carers, in order to evaluate the new orthosis. Twenty-six patients were recruited to the study, with 20 of these completing all phases of data collection. Participants described the impact of neck weakness on their life and limitations of existing supports. Evaluation of the new orthosis identified key beneficial features: notably, increased support while providing a greater range of movement, flexibility of use, and improved appearance and comfort. In conclusion, the results of this evaluation highlight the value of this alternative option for people with ALS, and potentially other patient groups who require a neck orthosis

    Iterative algorithms for total variation-like reconstructions in seismic tomography

    Full text link
    A qualitative comparison of total variation like penalties (total variation, Huber variant of total variation, total generalized variation, ...) is made in the context of global seismic tomography. Both penalized and constrained formulations of seismic recovery problems are treated. A number of simple iterative recovery algorithms applicable to these problems are described. The convergence speed of these algorithms is compared numerically in this setting. For the constrained formulation a new algorithm is proposed and its convergence is proven.Comment: 28 pages, 8 figures. Corrected sign errors in formula (25

    A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    Full text link
    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 Feb 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature T<20 MK, post-flare loops

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions

    Full text link
    Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) < 0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95% confidence level.Comment: 10 pages, 3 figure
    • …
    corecore