1,446 research outputs found

    Diffuse MeV Gamma-rays and Galactic 511 keV Line from Decaying WIMP Dark Matter

    Full text link
    The origin of both the diffuse high-latitude MeV gamma-ray emission and the 511 keV line flux from the Galactic bulge are uncertain. Previous studies have invoked dark matter physics to independently explain these observations, though as yet none has been able to explain both of these emissions within the well-motivated framework of Weakly-Interacting Massive Particles (WIMPs). Here we use an unstable WIMP dark matter model to show that it is in fact possible to simultaneously reconcile both of these observations, and in the process show a remarkable coincidence: decaying dark matter with MeV mass splittings can explain both observations if positrons and photons are produced with similar branching fractions. We illustrate this idea with an unstable branon, which is a standard WIMP dark matter candidate appearing in brane world models with large extra dimensions. We show that because branons decay via three-body final states, they are additionally unconstrained by searches for Galactic MeV gamma-ray lines. As a result, such unstable long-lifetime dark matter particles provide novel and distinct signatures that can be tested by future observations of MeV gamma-rays.Comment: 19 pages, 4 figure

    Coherence correlations in the dissipative two-state system

    Full text link
    We study the dynamical equilibrium correlation function of the polaron-dressed tunneling operator in the dissipative two-state system. Unlike the position operator, this coherence operator acts in the full system-plus-reservoir space. We calculate the relevant modified influence functional and present the exact formal expression for the coherence correlations in the form of a series in the number of tunneling events. For an Ohmic spectral density with the particular damping strength K=1/2K=1/2, the series is summed in analytic form for all times and for arbitrary values of temperature and bias. Using a diagrammatic approach, we find the long-time dynamics in the regime K<1K<1. In general, the coherence correlations decay algebraically as t2Kt^{-2K} at T=0. This implies that the linear static susceptibility diverges for K1/2K\le 1/2 as T0T\to 0, whereas it stays finite for K>1/2K>1/2 in this limit. The qualitative differences with respect to the asymptotic behavior of the position correlations are explained.Comment: 19 pages, 4 figures, to be published in Phys. Rev.

    Non-circular Gas Kinematics and Star Formation in the Ringed Galaxy NGC 4736

    Full text link
    We analyze the gas kinematics and star formation properties of the nearby RSab galaxy NGC 4736 using interferometric and single-dish CO(1-0) data and previously published Halpha and HI data. The CO morphology is dominated by a central molecular bar and tightly wound spiral arms associated with a bright ring of star formation. Strong HI emission is also found in the ring, but HI is absent from the central regions. Comparison of the HI and Halpha distributions suggests that HI in the ring is primarily dissociated H2_2. Modeling of the CO kinematics reveals gas motion in elliptical orbits around the central bar, and we argue that the ring represents both the OLR of the bar and the ILR of a larger oval distortion. The HI kinematics show evidence for axisymmetric inflow towards the ring and are inconsistent with streaming in aligned elliptical orbits, but the highly supersonic (~40 km/s) inflow velocities required, corresponding to mass inflow rates of ~2 Msol/yr, suggest that more sophisticated models (e.g., gas orbiting in precessed elliptical orbits) should be considered. The radial CO and Halpha profiles are poorly correlated in the vicinity of the nuclear bar, but show a better correlation (in rough agreement with the Schmidt law) at the ring. Even along the ring, however, the azimuthal correspondence between CO and Halpha is poor, suggesting that massive stars form more efficiently at some (perhaps resonant) locations than at others. These results indicate that the star formation rate per unit gas mass exhibits strong spatial variations and is not solely a function of the available gas supply. The localization of star formation to the ring is broadly consistent with gravitational instability theory, although the instability parameter Q3Q \sim 3 on average in the ring, only falling below 1 in localized regions.Comment: Revised version accepted by ApJ, with new section on p-v diagrams. 24 pages with 24 figures (emulateapj5). Full resolution and color versions are available at http://astro.berkeley.edu/~twong/preprint

    Broad clinical phenotypes associated with TAR-DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis

    Get PDF
    The finding of TDP-43 as a major component of ubiquitinated protein inclusions in amyotrophic lateral sclerosis (ALS) has led to the identification of 30 mutations in the transactive response-DNA binding protein (TARDBP) gene, encoding TDP-43. All but one are in exon 6, which encodes the glycine-rich domain. The aim of this study was to determine the frequency of TARDBP mutations in a large cohort of motor neurone disease patients from Northern England (42 non-superoxide dismutase 1 (SOD1) familial ALS (FALS), nine ALS-frontotemporal dementia, 474 sporadic ALS (SALS), 45 progressive muscular atrophy cases). We identified four mutations, two of which were novel, in two familial (FALS) and two sporadic (SALS) cases, giving a frequency of TARDBP mutations in non-SOD1 FALS of 5% and SALS of 0.4%. Analysis of clinical data identified that patients had typical ALS, with limb or bulbar onset, and showed considerable variation in age of onset and rapidity of disease course. However, all cases had an absence of clinically overt cognitive dysfunction

    The medical student

    Full text link
    The Medical Student was published from 1888-1921 by the students of Boston University School of Medicine

    Evaluating modelled tropospheric columns of CH4_4 , CO, and O3_3 in the Arctic using ground-based Fourier transform infrared (FTIR) measurements

    Get PDF
    This study evaluates tropospheric columns of methane, carbon monoxide, and ozone in the Arctic simulated by 11 models. The Arctic is warming at nearly 4 times the global average rate, and with changing emissions in and near the region, it is important to understand Arctic atmospheric composition and how it is changing. Both measurements and modelling of air pollution in the Arctic are difficult, making model validation with local measurements valuable. Evaluations are performed using data from five high-latitude ground-based Fourier transform infrared (FTIR) spectrometers in the Network for the Detection of Atmospheric Composition Change (NDACC). The models were selected as part of the 2021 Arctic Monitoring and Assessment Programme (AMAP) report on short-lived climate forcers. This work augments the model–measurement comparisons presented in that report by including a new data source: column-integrated FTIR measurements, whose spatial and temporal footprint is more representative of the free troposphere than in situ and satellite measurements. Mixing ratios of trace gases are modelled at 3-hourly intervals by CESM, CMAM, DEHM, EMEP MSC-W, GEM- MACH, GEOS-Chem, MATCH, MATCH-SALSA, MRI-ESM2, UKESM1, and WRF-Chem for the years 2008, 2009, 2014, and 2015. The comparisons focus on the troposphere (0–7 km partial columns) at Eureka, Canada; Thule, Greenland; Ny Ålesund, Norway; Kiruna, Sweden; and Harestua, Norway. Overall, the models are biased low in the tropospheric column, on average by −9.7 % for CH4_4, −21 % for CO, and −18 % for O3_3. Results for CH4_4 are relatively consistent across the 4 years, whereas CO has a maximum negative bias in the spring and minimum in the summer and O3_3 has a maximum difference centered around the summer. The average differences for the models are within the FTIR uncertainties for approximately 15 % of the model–location comparisons

    Ruinopolis: Post‐Imperial Theory and Learning from Las Vegas

    Full text link
    This essay foregrounds a dimension of L as V egas that other authors only touch on in passing: its connections to empire. The authors propose a post‐imperial analysis of the city based on a reconstruction of its history and a reading of the traces of this history in the city's architecture and its self‐presentation in American popular culture. This analysis of Las Vegas as ruinopolis draws attention to the ruin sites of the city and its hinterland, reading them through the lens of empire. We work out the imperial territoriality of Las Vegas, including the derelict space of the L as V egas P aiute I ndian C olony, the ‘Pentagon Desert’ around the city with its so‐called ‘national sacrifice zone’, and the Strip, with C aesars P alace. We conclude with a post‐imperial reading of V enturi, S cott B rown and I zenour's canonical Learning from Las Vegas and of the ruin signs of the N eon B oneyard.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106857/1/ijur12117.pd

    A novel family of diversified immunoregulatory receptors in teleosts is homologous to both mammalian Fc receptors and molecules encoded within the leukocyte receptor complex

    Get PDF
    Three novel and closely related leukocyte immune-type receptors (IpLITR) have been identified in channel catfish (Ictalurus punctatus). These receptors belong to a large polymorphic and polygenic subset of the Ig superfamily with members located on at least three independently segregating loci. Like mammalian and avian innate immune regulatory receptors, IpLITRs have both putative inhibitory and stimulatory forms, with multiple types coexpressed in various lymphoid tissues and clonal leukocyte cell lines. IpLITRs have an unusual and novel relationship to mammalian and avian innate immune receptors: the membrane distal Ig domains of an individual IpLITR are related to fragment crystallizable receptors (FcRs) and FcR-like proteins, whereas the membrane proximal Ig domains are related to several leukocyte receptor complex encoded receptors. This unique composition of Ig domains within individual receptors supports the hypothesis that functionally and genomically distinct immune receptor families found in tetrapods may have evolved from such ancestral genes by duplication and recombination events. Furthermore, the discovery of a large heterogeneous family of immunoregulatory receptors in teleosts, reminiscent of amphibian, avian, and mammalian Ig-like receptors, suggests that complex innate immune receptor networks have been conserved during vertebrate evolution. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at http://dx.doi.org/10.1007/s00251-006-0134-1 and is accessible for authorized users
    corecore