159 research outputs found

    The sensitivity of Euro-Atlantic regimes to model horizontal resolution

    Get PDF
    There is growing evidence that the atmospheric dynamics of the Euro-Atlantic sector during winter is driven in part by the presence of quasi-persistent regimes. However, general circulation models typically struggle to simulate these with, for example, an overly weakly persistent blocking regime. Previous studies have showed that increased horizontal resolution can improve the regime structure of a model but have so far only considered a single model with only one ensemble member at each resolution, leaving open the possibility that this may be either coincidental or model dependent. We show that the improvement in regime structure due to increased resolution is robust across multiple models with multiple ensemble members. However, while the high-resolution models have notably more tightly clustered data, other aspects of the regimes may not necessarily improve and are also subject to a large amount of sampling variability that typically requires at least three ensemble members to surmount

    Read-It: A Multi-modal Tangible Interface for Children Who Learn to Read

    Full text link
    Multi-modal tabletop applications offer excellent opportunities for enriching the education of young children. Read-It is an example of an interactive game with a multi-modal tangible interface that was designed to combine the advantages of current physical games and computer exercises. It is a novel approach for supporting children who learn to read. The first experimental evaluation has demonstrated that the Read-It approach is indeed promising and meets a priori expectations

    Intestinal microbiota development and gestational age in preterm neonates

    Get PDF
    The intestinal microbiota is an important contributor to the health of preterm infants, and may be destabilized by a number of environmental factors and treatment modalities. How to promote the development of a healthy microbiota in preterm infants is largely unknown. We collected fecal samples from 45 breastfed preterm very low birth weight (birth weight <1500 g) infants from birth until 60 days postnatal age to characterize the intestinal microbiota development during the first weeks of life in preterm infants. Fecal microbiota composition was determined by 16S rRNA amplicon sequencing. The main driver of microbiota development was gestational age; antibiotic use had strong but temporary effects and birth mode had little influence. Microbiota development proceeded in four phases indicated by the dominance of Staphylococcus, Enterococcus, Enterobacter, and finally Bifidobacterium. The Enterococcus phase was only observed among the extremely premature infants and appeared to delay the microbiota succession. The results indicate that hospitalized preterm infants receiving breast milk may develop a normal microbiota resembling that of term infants.Peer reviewe

    Enhanced nutrient supply and intestinal microbiota development in very low birth weight infants

    Get PDF
    BACKGROUND: Promoting a healthy intestinal microbiota may have positive effects on short- and long-term outcomes in very low birth weight (VLBW; BW = 28 weeks) infants and a steeper decrease in relative Staphylococcus abundance in extremely preterm (EP, gestational age <28 weeks) infants as compared to controls. Relative Bifidobacterium abundance tended to increase more in MVP controls compared to the intervention group. Abundance of pathogens was not increased in the intervention group. Higher relative Bifidobacterium abundance was associated with improved weight gain. CONCLUSION: Nutrition may affect richness, diversity, and microbiota composition. There was no increase in relative abundance of pathogens among infants receiving enhanced nutrient supply. Favorable microbiota development was associated with improved weight gain.Peer reviewe

    Erratum to: Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia (Nature Medicine, (2018), 24, 11, (1677-1682), 10.1038/s41591-018-0175-7)

    Get PDF
    © 2018, Springer Nature America, Inc. In the version of this article originally published, Dimitry G. Sayenko’s affiliations were not correct. The following affiliation for this author was missing: Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA. This affiliation has been added for the author, and the rest of the affiliations have been renumbered accordingly. The error has been corrected in the HTML and PDF versions of this article

    Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia

    Get PDF
    © 2018, The Author(s), under exclusive licence to Springer Nature America, Inc. Spinal sensorimotor networks that are functionally disconnected from the brain because of spinal cord injury (SCI) can be facilitated via epidural electrical stimulation (EES) to restore robust, coordinated motor activity in humans with paralysis1–3. Previously, we reported a clinical case of complete sensorimotor paralysis of the lower extremities in which EES restored the ability to stand and the ability to control step-like activity while side-lying or suspended vertically in a body-weight support system (BWS)4. Since then, dynamic task-specific training in the presence of EES, termed multimodal rehabilitation (MMR), was performed for 43 weeks and resulted in bilateral stepping on a treadmill, independent from trainer assistance or BWS. Additionally, MMR enabled independent stepping over ground while using a front-wheeled walker with trainer assistance at the hips to maintain balance. Furthermore, MMR engaged sensorimotor networks to achieve dynamic performance of standing and stepping. To our knowledge, this is the first report of independent stepping enabled by task-specific training in the presence of EES by a human with complete loss of lower extremity sensorimotor function due to SCI
    • …
    corecore