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Abstract
Recently, much attention has been devoted to better understand the internal modes of variability of the climate system. This 
is particularly important in mid-latitude regions like the North-Atlantic, which is characterized by a large natural variabil-
ity and is intrinsically difficult to predict. A suitable framework for studying the modes of variability of the atmospheric 
circulation is to look for recurrent patterns, commonly referred to as Weather Regimes. Each regime is characterized by a 
specific large-scale atmospheric circulation pattern, thus influencing regional weather and extremes over Europe. The focus 
of the present paper is the study of the Euro-Atlantic wintertime Weather Regimes in the climate models participating to the 
PRIMAVERA project. We analyse here the set of coupled historical simulations (hist-1950), which have been performed 
both at standard and increased resolution, following the HighresMIP protocol. The models’ performance in reproducing the 
observed Weather Regimes is assessed in terms of different metrics, focussing on systematic biases and on the impact of 
resolution. We also analyse the connection of the Weather Regimes with the Jet Stream latitude and blocking frequency over 
the North-Atlantic sector. We find that—for most models—the regime patterns are better represented in the higher resolution 
version, for all regimes but the NAO-. On the other side, no clear impact of resolution is seen on the regime frequency of 
occurrence and persistence. Also, for most models, the regimes tend to be more tightly clustered in the increased resolution 
simulations, more closely resembling the observed ones. However, the horizontal resolution is not the only factor determining 
the model performance, and we find some evidence that biases in the SSTs and mean geopotential field might also play a role.

Keywords  Climate models · Atmospheric dynamics · Mid-latitudes · Weather regimes · North Atlantic · HighresMIP · 
Modes of variability

1  Introduction

Due to its large natural variability, the North Atlantic–Euro-
pean climate is one of the most difficult to predict. The 
peculiarity of the North Atlantic is clearly seen in climato-
logical maps of the wintertime 500 hPa geopotential height 
variability, which shows two maxima in this region. The 
first maximum is found at high frequency—less than 5 days 
period—along the northeastern coast of North America, 
where the eddy-driven jet stream enters the Atlantic ocean. 
The second maximum is located in the northern part of the 
Atlantic Ocean, south of Iceland and northwest of the British 
Isles, in the center of action of the North Atlantic Oscillation 
(NAO) and is characterized by longer periods (5 days to a 
few weeks) (Blackmon et al. 1984).
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Alternative views of the North-Atlantic variability. A typical 
approach used to describe the variability in the North Atlan-
tic—and other mid-latitude regions—is to look for persistent 
and/or recurrent dynamical configurations. A great variety 
of dynamical variables (zonal wind, geopotential, sea level 
pressure, potential vorticity,...) and techniques (maxima in 
the pdf, clustering, ...) have been used historically to find a 
set of dominant “modes of variability” (Vautard 1990; Han-
nachi et al. 2017; Athanasiadis et al. 2010).

Recently, in particular for the North Atlantic region, most 
studies focus either on the geopotential height at middle/
upper tropospheric levels or on the zonal wind in the lower 
troposphere. The first approach, which is the focus of the 
present paper, consists in studying the variability in terms of 
recurrent and persistent geopotential patterns. These patterns 
are commonly referred to as Weather Regimes (WRs) and 
can last from a few days up to three or 4 weeks (Straus et al. 
2007; Dawson et al. 2012; Hannachi et al. 2017). Attempts 
at locating such geopotential height regimes using clustering 
methods have consistently identified four regimes dominat-
ing the wintertime atmospheric variability over the Euro-
Atlantic region (Hannachi et al. 2017; Straus et al. 2017; 
Dawson et al. 2012). These regimes are: 

1.	 The positive phase of the NAO (NAO+), characterized 
by a low pressure South of Iceland and a positive anom-
aly at lower latitudes (southern Europe, Azores);

2.	 The Scandinavian Blocking (SBL) pattern, showing a 
strong high pressure over western Scandinavia and the 
North Sea;

3.	 The Atlantic Ridge pattern (AR), characterized by a 
high pressure anomaly in the middle of North-Atlantic 
at about 55◦ latitude;

4.	 The negative phase of the NAO (NAO−), with a high 
pressure anomaly over Greenland and a low pressure 
over southern latitudes.

Weather regimes have been frequently studied in a nonlinear 
dynamical system perspective. The clear tendency for multi-
modality in the pdf of the observed field—which departs 
significantly from a multinormal distribution (Straus et al. 
2007, 2017; Dawson et al. 2012; Corti et al. 1999)—sug-
gests to consider the regimes as real attractors of the chaotic 
climate system. This hypothesis has been widely studied in 
simplified models (Christensen et al. 2015; Hannachi et al. 
2017) and extended by analogy to complex GCMs (Palmer 
1999; Corti et al. 1999).

An alternative perspective to Weather Regimes uses the 
latitudinal position and maximum speed of the eddy-driven 
Jet Stream. Woollings et al. (2010) showed that the observed 
distribution of the jet stream latitude is multi-modal and 
there are three preferred locations corresponding to differ-
ent geopotential configurations. A southern shift in the jet 

stream is linked to a negative phase of the NAO and an anti-
cyclonic anomaly over Greenland, while central and north-
ern jets correspond to the positive and negative East Atlantic 
patterns (EA), closely related to NAO + and AR regimes 
(Woollings et al. 2010; Franzke et al. 2011; Madonna et al. 
2017). In this framework, the SBL regime covers a wide 
variety of jet latitudes and is referred to as mixed jet state. 
As for the jet speed, systematically smaller values are found 
in the third sector of the NAO-EA phase space (i.e. nega-
tive NAO and negative EA), corresponding to part of the 
SBL and NAO-regimes. Large variability of the jet speed is 
found in the remaining three sectors of the NAO-EA space. 
An important step towards reconciling the Jet Stream lati-
tude and Weather Regimes perspectives has been done by 
Madonna et al. (2017), who performed cluster analysis of 
the two dimensional lower tropospheric zonal wind patterns 
over the North Atlantic. Three out of the four “jet regimes” 
obtained in this way correspond to the three peaks in the 
one-dimensional jet latitude distribution, and the fourth 
(linked to the SBL regime) consists of a low or central jet 
in the western Atlantic that abruptly shifts northward due 
to the blocking high over Scandinavia. They additionally 
show how these “jet regimes” well match the usual weather 
regimes calculated from geopotential height, so building a 
consistent dynamical picture of the modes of variability over 
the Euro-Atlantic sector.

Another common and closely related analysis consists 
in studying the modifications of the unperturbed westerly 
flow in terms of blocking episodes, that is the presence of a 
high geopotential height anomaly that forces the jet to shift 
or to weaken and meander. The climatological frequency of 
blocked days shows two distinct maxima over northwest-
ern Europe and Greenland, which have their counterparts 
in the SBL and NAO-Weather Regimes pattern (Scherrer 
et al. 2006; Davini et al. 2012, 2017; Madonna et al. 2017). 
In this sense, out of the 4 weather regimes described above, 
we have a single unblocked regime (NAO+) and three 
“blocked” regimes (SBL, AR, NAO-), although the corre-
spondence might not be completely consistent.

Climate models. Global climate models have improved much 
in the representation of the large-scale circulation in the last 
decades, primarily as a consequence of new parameteriza-
tion schemes and larger computational resources that have 
allowed to reach resolutions on the order of 100 km and 
below (Haarsma et al. 2016; Roberts et al. 2018b). However, 
many problems are still to be solved and the skill in repro-
ducing some features of the observed climate will hopefully 
improve in future models. Focusing on the North-Atlantic, 
models are known to struggle to reproduce the observed 
jet stream variability and blocking frequency. Most CMIP5 
models show no sign of multi-modality in the jet latitude 
pdf (Hannachi et al. 2013; Anstey et al. 2013; Iqbal et al. 
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2018) and have a well-known negative bias in the climato-
logical frequency of blocking events over Europe (Anstey 
et al. 2013; Davini and D’Andrea 2016; Masato et al. 2013; 
Schiemann et al. 2017).

Also, some studies have focused on the performance 
of complex GCMs in correctly reproducing the observed 
Weather Regimes. An example in this regard is the article 
by Dawson et al. (2012): a low (spectral resolution T159, 
roughly 125 km grid spacing) and a high resolution ver-
sion (T1279, roughly 16 km spacing) of the ECMWF model 
were compared for their skill in reproducing the regimes 
patterns, their frequency of occurrence, persistence and 
preferred transitions. The low-resolution version was found 
unable to correctly reproduce the SBL and AR regimes 
and produced too many short NAO events. The high-res-
olution model showed significant improvements, hinting 
that an increase in resolution is needed to give a reliable 
representation of North-Atlantic variability. Dawson and 
Palmer (2015) showed that some improvement is already 
obtained with an intermediate resolution (T511). A similar 
analysis has been performed by Cattiaux et al. (2013) on the 
CMIP3 and CMIP5 versions of the IPSL model at different 
resolutions. The regimes patterns were found to be better 
reproduced with the CMIP5 version, which included more 
vertical levels, and with increased resolution. In terms of 
frequencies, they found an overestimation of the NAO+ and 
SBL occurrence, which slightly improved with resolution. 
More recently, Strommen et al. (2019) analyzed the standard 
and high resolution versions of three climate models run 
in atmospheric-only mode (AMIP) and found no system-
atic improvements in the regime patterns with resolution. 
However, both the sharpness of the regime structure (see 
Sect. 3.2) and the persistence of the SBL regime improved 
with increased resolution.

WRs and climate change. In recent years, there has been 
increasing interest in studying WRs and how well climate 
models reproduce them, due to their importance in influ-
encing regional weather patterns and extremes and possi-
bly future regional changes in the climate state (Corti et al. 
1999; Matsueda and Palmer 2018). In fact, much attention 
has been given recently not only to the future changes in the 
mean state of the general circulation (Hoskins and Wooll-
ings 2015), but also to changes in the modes of variability. 
The interest in the reproduction of WRs in GCMs and in 
their response to climate change is motivated by different 
reasons. From a dynamical systems perspective, it has been 
hypothesized that the first response of the system to a mod-
erate external forcing would manifest in the frequencies of 
occurrence of the different modes of variability, whilst the 
variability patterns will remain initially unchanged (Palmer 
1999; Corti et al. 1999). From a more pragmatic point of 
view, WRs are closely connected with regional weather 

types and weather extremes and constitute a clear and use-
ful framework to study the impacts of climate change in 
key mid-latitude regions, like Europe and the Mediterranean 
(Plaut and Simonnet 2001; Yiou and Nogaj 2004; Zamp-
ieri et al. 2017; Raymond et al. 2018) or the Atlantic coast 
of North-America (Roller et al. 2016). Recently, the WRs 
framework has also been used to assess the variability of 
wind/solar energy production potential in Europe (Grams 
et al. 2017).

In this paper we report on a multi-model assessment 
of various diagnostics related to WRs, considering a set 
of coupled historical simulations using different state-of-
the-art climate models at two resolutions. The main goal 
of the paper is to investigate the typical model biases in 
reproducing the observed WRs and their dynamics. Spe-
cifically, we assess whether increasing the model resolution 
produces a significant improvement in the diagnostics in a 
multi-model ensemble, following on from previous results 
for individual models (Dawson and Palmer 2015) and for 
AMIP simulations (Strommen et al. 2019). The paper is 
structured as follows: Sect. 2 regards the data used in the 
analysis and describes the models and their configurations; 
Sect. 3 describes the procedure used to calculate the Weather 
Regimes and the related diagnostics; Sect. 4 contains the 
main results of the paper, regarding the model performances 
and the improvements with increased resolution; in Sect. 5 
we analyse some possible drivers of the model performance; 
Sect. 6 is dedicated to the final discussion and conclusions.

2 � Data: models and observations

The coupled models considered in this work are those par-
ticipating in the European H2020 PRIMAVERA project: 
CMCC-CM2 (Cherchi et al. 2019), CNRM-CM6 (Voldoire 
et al. 2019), EC-Earth3 (Haarsma et al. 2020), ECMWF-
IFS (Roberts et al. 2018a), HadGEM3-GC31 (Williams et al. 
2018), MPI-ESM1-2 (Gutjahr et al. 2019), AWI-CM-1.0 
(Sein et al. 2017). All models follow the HighResMIP pro-
tocol (Haarsma et al. 2016), at nominal resolutions rang-
ing from 250 to 25 km. For each model, two versions are 
available, one at standard (low-res, LR) and one at higher 
resolution (high-res, HR); some model produced additional 
intermediate resolutions as well. This is done following the 
philosophy of the project, which aims to assess the improve-
ments in the representation of the observed climate due only 
to the increased model resolution. Therefore, the models 
have been tuned in their low-res version, and the high-res 
version is obtained by just increasing the resolution, with no 
additional tuning.

In Table 1, all models are listed with their basic char-
acteristics, their effective resolutions in both the atmos-
phere and ocean components, and the number of ensemble 



5034	 F. Fabiano et al.

1 3

members analysed for each resolution. Note that most mod-
els increased the resolution of both the atmosphere and the 
ocean components, with the exception of CMCC-CM2 and 
MPI-ESM1, increasing the atmospheric resolution only.

Under the PRIMAVERA project, models are run both 
in atmosphere-only and coupled mode. Here we consider 
the coupled historical simulations (hist-1950), covering 
the range 1950–2014. For each simulation we use the geo-
potential height daily mean data at 500 hPa, as explained in 
Sect. 3.1. As a reference, we take geopotential height daily 
reanalysis data at 500 hPa from ERA40 (1957–1978) and 
ERAInterim (1979–2014), thus covering the 1957–2014 
range.

3 � Method and diagnostics

The following subsections describe the methodology used 
to calculate the Weather Regimes together with the diagnos-
tics and metrics applied to compare observed and simulated 
regimes. The work-flow has been implemented in a Python 
software package named “WRtool”, freely available at https​
://githu​b.com/fedef​17/WRtoo​l.

3.1 � Calculation of the weather Regimes

The calculation of Weather Regimes is performed here 
through clustering of the geopotential height anomalies at 
500 hPa (Z500) in a reduced phase space. This approach 
is widely used in literature, even if many subtle variations 
in the actual procedure have been adopted (Hannachi et al. 
2017; Straus et al. 2017). Despite these differences, the main 
results of the analysis are quite robust, as documented by 
many accurate tests in literature (Straus et al. 2007; Han-
nachi et al. 2013).

In this work we consider the wintertime (December–Feb-
ruary; DJF) daily Z500 fields and proceed through the fol-
lowing steps.

Data pre-treatment and removal of the mean seasonal cycle. 
The model (and the reanalysis) data are first interpolated 
to a 2.5◦× 2.5◦ grid using bilinear interpolation. This is 
done mainly for practical reasons related to data-handling, 
i.e. to have all the data at the same spatial resolution. The 
interpolation does not affect the results, mainly because we 
are interested in large scale patterns. We then calculate the 
mean seasonal cycle and subtract it from the data, to obtain 
a timeseries of daily geopotential height anomalies. The 
seasonal cycle is calculated averaging the full 1957–2014 
timeseries day-by-day and then performing a running mean 
of 20 days. Other authors used a running mean of 5 days 
(Dawson et al. 2012; Strommen et al. 2019) or calculated 
the timeseries expansion in terms of Legendre polynomials 
(Straus et al. 2007). We chose the 20 days running mean in 
order to avoid higher frequency fluctuations due to internal 
variability. We considered whether to detrend the seasonal 
cycle, in order to remove the climate change signal on the 
mean state: the trend in the wintertime 500 hPa geopotential 
height was found to be comparable to decadal variability in 
some regions (with a maximum of about 20 m in the south-
west part of the domain) and generally smaller elsewhere 
(not shown). We finally decided not to apply the detrending, 
because considering shorter (30 years) periods introduces 
unwanted noise from decadal variability in the entire domain 
and in the WR attribution.

We select the Euro-Atlantic (EAT) domain (30◦–90◦ N, 
80◦ W–40◦ E), which is one of the most used in the literature 
(Dawson et al. 2012; Madonna et al. 2017; Strommen et al. 
2019), although some authors considered slightly different 
sectors (Cassou 2008; Cattiaux et al. 2013). We checked that 

Table 1   Models used in the analysis, listed with their components 
(atmosphere/ocean/ice models), the atmospheric grid used for the 
two versions (low- and high-res), the nominal resolution and number 
of levels used for the atmosphere and ocean components, the num-

ber of ensemble members analysed for each resolution. Note that for 
HadGEM-GC31 (LL, MM, HM, HH) and ECMWF-IFS (LR, MR, 
HR) more than two model versions have been analyzed

Model name CMCC-CM2 CNRM-CM6 EC-Earth3 ECMWF-IFS MPI-ESM1 HadGEM-GC31 AWI-CM-1

Components CAM4, NEMO, 
CICE

ARPEGE, 
NEMO, 
GELATO

IFS, NEMO, 
LIM

IFS (43r1), 
NEMO, LIM2

ECHAM6.3, 
MPIOM1.63, 
MPIOM1.63

UM, NEMO, 
CICE

ECHAM6.3, 
FESOM, 
FESIM

Atmos grid 1◦ × 1 ◦ , 0.25◦ × 
0.25◦

Tl127, Tl359 Tl255, Tl511 Tco199, Tco199, 
Tco399

T127, T255 N96, N216, 
N512, N512

T63, T127

Atmos. nom. res. 
(km)

100, 25 250, 50 100, 50 50, 50, 25 100, 50 250, 100, 50, 50 250, 100

Atmos levels 26 91 91 91 95 85 95
Ocean nom. res. 

(km)
25, 25 100, 25 100, 25 100, 25, 25 40, 40 100, 25, 25, 8 50, 25

Ocean levels 50 75 75 75 40 75 47
Members 1, 1 2, 1 3, 3 8, 3, 6 1, 1 8, 1, 3, 1 1, 1

https://github.com/fedef17/WRtool
https://github.com/fedef17/WRtool
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the observed regimes’ patterns are robust to small changes 
in the choice of the domain (of the order of 10◦ ). It is worth 
noting that the Euro-Atlantic domain used here extends 
much more eastward (40◦ ) than the usual North-Atlantic 
region adopted in Jet Stream studies (Woollings et al. 2010).

Calculation of the EOFs and projection onto the reduced 
phase space. We then calculate the Empirical Orthogonal 
Functions (EOFs) of the anomalies on the Euro-Atlantic 
domain and define a phase space of reduced dimensionality 
as that spanned by the first 4 EOFs, representing about 55% 
of the variance. The choice of the number of EOFs varies 
in literature from 4 (Dawson et al. 2012) up to 14 (Cassou 
2008; Cattiaux et al. 2013) or more. Sensitivity tests have 
been performed by (Straus et al. 2007) for the Pacific-North 
American sector and show that the mean regime patterns are 
quite insensitive to this choice, but the clustering becomes 
less significant with a larger number of EOFs. We performed 
similar tests for the EAT domain, finding that regime pat-
terns and cluster attribution are robust to this choice.

We proceed differently at this point for the models and for 
the reference. Repeating this step for each simulation would 
produce different EOFs and then different phase spaces, and 
would constitute an additional factor to take into account in 
the analysis. For example, it can also happen in some cases 
that the 4th model EOF is the model counterpart of the 5th 
EOF in the observations or so, thus heavily penalizing the 
model performance in some regards.

For these reasons we chose to use the same reduced phase 
space for all simulations, which is that spanned by the 4 
leading EOFs obtained from ERA reanalysis (”phase space” 
in the following). The daily anomalies are then projected 
on this space, thus obtaining a timeseries of 4 Components 
(pseudo-PCs) for each simulation. Strictly speaking, these 
are not Principal Components, since we are not projecting 
on the model EOFs. Using the same space for all models 
allows comparing the regime patterns in a consistent way 
(for example, computing distances and angles). However, 
this choice might affect some of the metrics applied to evalu-
ate the regime structure, so we specifically comment on this 
in Sect. 3.2.

Clustering and Weather Regimes attribution. We apply a 
K-means clustering algorithm to the models’ pseudo-PCs 
and observation PCs, setting the number of clusters to 4. 
This number has been found to give the most significant 
clustering for the wintertime Euro-Atlantic sector (Michel-
angeli et al. 1995; Cassou 2008; Straus et al. 2017; Han-
nachi et al. 2017). Each day in the pseudo-PCs timeseries 
is assigned to a cluster, minimizing the distance in phase 
space to the cluster centroid. The mean regime patterns are 
calculated as composites of all the points belonging to the 
corresponding cluster. Once the model clusters have been 

calculated, their order might differ from the reference ones. 
Therefore a best-matching algorithm is applied, which reor-
ders the simulated regimes so as to minimize the total RMS 
deviation between the observed and simulated patterns.

3.2 � WR‑related model diagnostics

The Weather Regimes are first calculated for the reanalysis 
dataset and used as a reference for the simulated WRs. The 
WR patterns obtained here for the ERA reanalysis are shown 
in Fig. 1. Using a different reanalysis like JRA55 or NCEP 
produces very similar results (Strommen et al. 2019; Dawson 
et al. 2012). In line with previous works (Dawson et al. 2012; 
Cattiaux et al. 2013; Strommen et al. 2019), we evaluate the 
model performance in reproducing WRs in terms of differ-
ent metrics: 

	 (i)	 Regime centroid and mean pattern. For each regime, 
the cluster centroid in phase space is given by the 
average of all pseudo-PCs assigned to that regime. 
This corresponds to a mean regime pattern, which 
is the simplest way to visualize the preferred large 
scale geostrophic flow configuration corresponding 
to that regime. A subtle difference exists between the 
mean pattern calculated in this way and that obtained 
through the composite of all daily anomalies cor-
responding to the cluster. The latter considers the 
anomalies in the full space, instead of only the 4 
dimensions given by the reference EOFs. However, 
since higher order variability is quite uniform across 
the regimes, the two patterns are almost indistin-
guishable, and we use the reduced phase space pat-
tern for consistency with the other metrics.

	 (ii)	 Regime “clouds” in phase space. The comparison 
of the simulated and observed regime patterns is 
good to get an idea of the model performance “at a 
glance”. However, there is much more information 
stored in the statistics of the pseudo-PCs belong-
ing to each regime. For example, the location of the 
centroid does not provide any information about the 
shape or the width of the distribution. Therefore, we 
apply a suitable metric to compare the model regime 
“clouds” in phase space. For each regime, we cal-
culate the relative entropy of the modeled distribu-
tion with respect to the reference one. The relative 
entropy or Kullback–Leibler divergence (Kullback 
and Leibler 1951) is a measure of how much the two 
distributions differ from an information theory per-
spective: the larger the relative entropy, the further 
the two distributions are; a value of 0 means that 
the two distributions are identical. The reference and 
model distributions of the regime clouds are calcu-
lated through a Gaussian kernel approach for each 



5036	 F. Fabiano et al.

1 3

regime separately on a fixed grid, considering the 
first 3 pseudo-PCs only (for computational reasons). 
The relative entropy is given by: 

 where P is the reference distribution obtained from 
ERA, Q is the simulated one and the xi are all points 
in the 3-dimensional grid.

	 (iii)	 Variance ratio. Also called optimal variance ratio, 
this is the ratio between the mean inter-cluster 
squared distance and the mean intra-cluster variance. 
The larger the variance ratio, the more clustered are 
the data, giving compact clusters well apart one from 
the other. The variance ratios are always below unity 
for the data we analyze here, meaning that the clus-
ters are somewhat overlapping. Formally, the vari-
ance ratio is obtained in the following way: 

(1)EKL(P,Q) =
∑

i

P
(
xi
)
log

(
P
(
xi
)

Q
(
xi
)

)

(2)Rv =

2
∑

Cij

��
�
�� − ��

��
�

2

(n − 1)
∑

i �
2
i

 where the first summation is done over all the com-
binations (without repetition) of the clusters ( Cij ), 
�� and �� are the respective cluster centroids, n is 
the number of clusters and �2

i
 is the intra-cluster 

variance.
	 (iv)	 Sharpness. This measure (also called significance 

in previous works) is closely connected to the vari-
ance ratio. A Monte Carlo test is performed on the 
pseudo-PCs, to assess whether there is evidence of 
multi-modality and hence non-normality. Following 
previous works (Straus and Molteni 2004; Straus 
et al. 2007; Dawson et al. 2012; Dawson and Palmer 
2015; Strommen et al. 2019), we first construct 1000 
synthetic data series drawn from a multinormal dis-
tribution with the same length, lag-1 autocorrelation 
and variance as the original pseudo-PCs. The sharp-
ness is defined as the percent of synthetic data series 
that have a variance ratio smaller than the original 
one (i.e. that are “less clustered”).

	 (v)	 Regime frequencies. The frequency of occurrence of 
each regime is calculated simply as the ratio of days 
belonging to that regime to the total number of days.

	 (vi)	 Regime persistence. A regime event is defined as 
the set of consecutive days belonging to the same 

Fig. 1   Mean pattern of the 
weather regimes obtained from 
a combination of ERA40 and 
ERAInterim (1957–2014)
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regime. Since sometimes a single day pause breaks 
a long regime event, we relaxed this definition allow-
ing for a single day belonging to a different regime 
in the set of a regime event. The distribution of the 
length of the regime events in each simulation is ana-
lysed and compared to the reference one.

	(vii)	 Regime Jet Latitude distribution. The dynamical con-
nection between WRs and eddy-driven Jet Stream is 
analyzed here calculating the distribution of the Jet 
Latitude index corresponding to each regime, in a 
similar way to what Madonna et al. (2017) did for 
the reanalysis. The regime-related distributions are 
then compared to the reference ones. The Jet latitude 
distributions of the hist-1950 PRIMAVERA simula-
tions are thoroughly analyzed in Athanasiadis et al. 
(in prep.). Here we use their calculations to analyze 
the link between Euro-Atlantic WRs and Jet Stream. 
The calculation considers the daily mean uwind field 
at 850 hPa, low-pass filtered using a Lanczos filter at 
10 days. The jet latitude is defined as the latitude of 
maximum Jet speed, after zonal averaging between 
60W and 0 longitude. The index is consistent with 
the one defined in Woollings et al. (2010), apart from 
an additional filtering of grid points with orography 
higher than 1300 m.

	(viii)	 Regime Blocking frequency. We also computed 
regime composites of the 2D blocking frequencies 
and compared them to the reference ones in terms 
of mean frequency over the EAT sector. The Block-
ing frequencies are calculated as in Schiemann et al. 
(2017) using the absolute geopotential height (AGP) 
blocking index (Scherrer et al. 2006). The AGP index 
is a two-dimensional extension of the Tibaldi and 
Molteni (1990) blocking index. Two conditions are 
needed to define a blocking event at a specific grid 
point: reversal of the climatological equator-pole gra-
dient of the 500-hPa geopotential height to the south 
and a westerly flow to the north. There is the addi-
tional requirement that these conditions are met for 
at least 5 consecutive days. A thorough analysis of 
blocking in the hist-1950 PRIMAVERA simulations 
is performed in Schiemann et al. (2020). Here we are 
mainly interested in the connection of the blocking 
index with the WRs.

4 � Model performance and improvements 
with increased resolution

A common problem in climate studies that compare coupled 
historical runs with the observations is that only a “single” 
observed history is available. If the differences between the 
simulated and observed climates are inside the range of the 

internal variability, it is very difficult to assess whether they 
reflect some real bias of the model or only different phases 
of the internal oscillations.

One way to estimate the internal variability on decadal 
timescales is to perform a bootstrap analysis to the available 
dataset. This has been done consistently for all simulations 
and for the observations, considering sets of 30 seasons ran-
domly chosen (with repetitions allowed) among all available 
seasons between 1957 and 2014. Repeating this step 500 
times gives an estimate of the distribution of the various 
metrics and allows to properly compare models and obser-
vations. Figures 2, 3, 4, 5, 6, 7, 8, 10 (with the exception 
of Fig. 9) show box plots that represent the distributions 
obtained through the bootstrapping. For each model, the 
plots show median (horizontal line), first and third quartile 
(boxes) and 10 and 90 percentiles (bars). For some mod-
els, more ensemble runs with the same model configuration 
were available (see Table 1): in those cases, the distribution 
median and percentiles are calculated among all members. 
Mean and extreme (max/min) values across the ensemble of 
each member’s mean metrics are also shown in terms of a 
dot and two small triangles. At the right of the gray vertical 
line, three boxes are shown. The first (black box) refers to 
the ERA 30-year bootstraps and is obtained in the same way 
as for the models. The other two boxes represent average 
quantities among all the LR and HR models: in this case the 
meaning of the boxes and bars does not correspond to the 
true percentiles and median of the overall distribution, but 
are calculated as the average of the percentiles and median 
over all models. For the models with more than two resolu-
tions, only the lowest and highest resolutions are taken into 
account for the LR and HR averages. The different number 
of ensemble members does not affect the multi-model aver-
age: each model weighs one regardless of the number of 
simulations performed.

In the following, we dedicate a paragraph to each diag-
nostic, aiming to rigorously assess the existence and mag-
nitude of model biases.

4.1 � Regime centroid and mean pattern

Weather Regimes’ centroids (i.e. the mean anomalies) are 
usually poorly simulated in simplified models of the atmos-
pheric circulation or in GCMs at low resolutions (Dawson 
et al. 2012), at least for some of the regimes. With state-of-
the-art climate model resolutions, the patterns have greatly 
improved and there is a qualitatively good matching between 
simulated and observed regimes. More quantitatively, we 
calculated the distance in phase space between the simulated 
and reference centroids and the pattern correlation between 
the respective mean patterns.

Figures 2 and 3 show the performance of different models 
in terms of the phase space distance between simulated and 
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reference centroids (Fig. 2) and in terms of the correlation 
between the simulated and reference mean patterns (Fig. 3). 
For each model, the fainter color corresponds to the low-
est resolution and the stronger color to the highest resolu-
tion version. At the right end of the plot, a measure of the 
observed variability (black box, named “ERA”) is shown 
along with the ensemble average of the lowest and highest 
resolution versions of each model.

For all regimes but the NAO-, most of the models show 
an improvement with increased resolution, both in terms of 
the centroid-to-centroid distance and of the mean pattern 
correlation. The improvement is not seen for NAO-, where 
we notice a slight degradation for most models. However, 
this might in part be due to the fact that the NAO-regime 
is already well reproduced in most models and shows in 
fact the smallest mean distance and the largest pattern 
correlation.

4.2 � Regime clouds in phase space

The differences between the simulated and observed 
regime clouds are evaluated through the relative entropy 
between the two sets of distributions, as explained in 
Sect. 3. The results of the comparison are shown in Fig. 4. 
In most cases, the direction of change is consistent with 
the results obtained comparing the centroids and mean 
patterns, showing an improvement (i.e. a lower relative 
entropy) with high-res for most models and all regimes. It 
is worth recalling here that the pdfs have been corrected 
for the offset in the centroid position, so that the relative 
entropy in Fig. 4 is due only to the regime cloud shape 
and spread.

Fig. 2   Performance of the models in terms of centroid-to-centroid 
distance, separately for each Weather Regime. The box plots refer 
to the distribution of 30-yr bootstraps of each model and show mean 
(dot), median (horizontal line), first and third quartile (boxes) and 10 
and 90 percentiles (bars). For models with more ensemble runs, mean 
and extreme (max/min) values across the ensemble are also shown in 

terms of a dot and two small triangles. At the right of the gray ver-
tical line, three boxes are shown. The first (black box) refers to the 
ERA 30-year bootstraps. The other two boxes represent average quan-
tities among all the LR and HR models and are calculated as the aver-
age of the percentiles and median over all models. More details in the 
text at the beginning of Sect. 4
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4.3 � Variance ratio and sharpness

The variance ratio and sharpness of the regime clusters are 
the metrics that most clearly show the differences between 
models and observations. Figures 5 and 6 show the evalua-
tion of these two quantities for a 30-year bootstrap analysis 
of the models and observations.

As it is clearly seen in Fig. 5, almost all simulations have 
a lower variance ratio than the reanalysis, and most of them 
are outside the range of ERA variability. The only nota-
ble exception are the LL, MM and HM simulations of the 
HadGEM-GC31 model, that have values in the lower half 
of the observed range. This means that the models are not 
yet able to fully capture the regime structure of the observed 
geopotential field in the North Atlantic and the simulated 
regimes tend to be systematically less tightly clustered. Most 
models improve with the increased resolution, apart from 
MPI-ESM1-2 and HadGEM-GC31. On average, the HR 
model versions perform better in that the lower tail of the 
distribution is significantly shifted towards higher values. A 
small increase is also noted in the median of the distribution.

Also for the sharpness (Fig. 6) the model biases are 
very clear: all models have a smaller sharpness than the 
observation and show a much larger range of variabil-
ity. Although the range of variability might be enhanced 
by the construction of the sharpness measure, which is 
highly nonlinear and threshold sensitive, the difference 
between models and observations remains clear and out-
side the range of the observed variability. In this case, the 
models respond in different directions to the increased 
resolution: some of them get better (AWI-CM-1-1, 
CNRM-CM6, HadGEM-GC31), other (EC-Earth3P, 
CMCC-CM2, ECMWF-IFS) do not show significant 
shifts of the distribution and MPI-ESM1 gets worse. To 
further complicate this picture, the change is not mono-
tonic with increasing resolution when considering a sin-
gle model: both ECMWF and HadGEM-GC31 show a 
different behavior between the MR and LR resolution 
versions and the HR and MR versions. Similarly to the 
variance ratio, when looking at the ensemble average of 
sharpness, a depopulation of the lower quartile of the dis-
tribution is seen in favour of the upper quartiles, showing 

Fig. 3   Performance of the models in terms of spatial correlation between the simulated and reference mean patterns, separately for each Weather 
Regime. For details on the plot construction, refer to Fig. 2
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Fig. 4   Relative entropy of the regime “clouds”, separately for each Weather Regime. For details on the plot construction, refer to Fig. 2

Fig. 5   Variance ratio of the 
WRs in the models and obser-
vations. For details on the plot 
construction, refer to Fig. 2
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Fig. 6   As in Fig. 6, but for 
sharpness

Fig. 7   Frequency of occurrence of the different regimes in models and observations. For details on the plot construction, refer to Fig. 2
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an overall tendency to go towards the observed value. 
Strommen et al. (2019) found a consistent improvement 
of sharpness with increased resolution analyzing a set of 
AMIP simulations (3 models). Our average result across 
the LR and HR ensembles goes in the same direction, 
but the increase is not systematic, with a strong model-
dependent footprint.

The projection of models’ anomalies onto the reference 
EOFs—instead of the models’ EOFs—(see Sect. 3.1 for 
details) might have an impact on the simulated regime 
structure. In particular, a positive (negative) bias can 
affect the variance ratio and sharpness metrics. This pos-
sibility has been tested by checking these two quantities 
using for each model the phase space spanned by their 
own EOFs. The results (see Figures S1 and S2 of the sup-
plementary material) are consistent with those shown in 
Figs. 5 and 6. Although the values of both quantities are 
smaller when using the models’ phase space and signifi-
cant differences in sharpness can be seen for individual 
models, the general conclusions reported above remain 
valid.

4.4 � Regime frequencies and persistence

The frequency of occurrence of Weather Regimes and their 
persistence are key quantities representing the dynamics of 
the system, and of primary importance for impact studies. 
Figure 7 shows the frequencies for all regimes, as obtained 
from the 30-yr bootstraps.

As we can see, the distributions of simulated regime 
frequencies overlap at least partly with the observed one, 
though some departures from the observations can be 
seen. For the NAO+ regime, a systematic underestima-
tion of the frequency is found in almost all models, which 
are unable to catch frequencies in the upper half of the 
observed distribution. On the other side, most models 
overestimate the frequency of the AR regime, although 
the inter-model variability is much larger in this case. The 
frequency of NAO- and SBL regimes are better caught 
by the models, at least by the LR and HR averages. No 
systematic shift of the frequencies of the NAO+ and AR 
regimes is seen with increased resolution. This is clearly 
shown by the LR and HR averages that are remarkably 

Fig. 8   Average regime duration in days. For details on the plot construction, refer to Fig. 2
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stable and have a similar range of variability. A small 
positive (negative) shift of the frequency distribution is 
seen on average for the NAO- (SBL) regime, however the 
different models do not behave consistently in this case.

Figure 8 shows the average regime duration in days. 
For both the NAO regimes, most models systematically 
underestimate the average regime duration. This is true on 
average also for the SBL regime, although some models 
are able to reach the observed range. The same results are 
obtained if the analysis is performed in terms of regime 
persistence probability (not shown). It is worth noting that 
the observed range of variability is significantly larger for 
the NAO-regime, meaning that there is a large interannual 
variability on the duration of this regime. The behaviour 
of the models with increased resolution gives a contrast-
ing result: we found a higher persistence of the NAO+ 
regime in most models and a lower persistence—in all 
models but one—for the NAO-regime.

4.5 � Weather Regimes and jet latitude

The link between the WRs and the peak latitude of the Jet 
Stream in the North-Atlantic is analyzed here in terms of the 
Jet latitude distributions corresponding to each regime. As 
assessed in Madonna et al. (2017), the observed WRs are 
characterized by specific shifts of the Jet Stream. NAO+, 
Atlantic Ridge and NAO- see prevailing central, northern 
and southern jets. The situation is different for Scandinavian 
Blocking, where the jet is usually tilted from South to North 
and this produces a much broader distribution of jet latitudes 
in the 1D framework.

Figure 9 shows the results of the same analysis for the 
models analyzed here. Only the models analyzed in the 
paper by Athanasiadis et al. (in prep.) are shown. As can 
be seen, the models usually do quite a good job for NAO+, 
where the two ensemble averages are barely distinguishable 
from the observed one. For AR and NAO-, the models are 

Fig. 9   Jet latitude distribution corresponding to each Weather 
Regime. Unlike Figs. 2, 3, 4, 5, 6, 7, 8, the distributions are simply 
the daily jet latitudes corresponding to each simulation, no bootstrap-

ping is involved. The two ensemble averages are calculated as before, 
as the average of the median and percentiles over the ensemble
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still limited in reaching the displacement seen in the real jet: 
for both regimes, they tend to produce too many central jets. 
The ensemble averages show in both cases a small improve-
ment with increased resolution. In the case of SBL, a sig-
nificant bias exists in the spread of the distributions, which 
tend to be confined to central latitudes for most models and 
systematically miss the observed northward extension.

4.6 � Weather Regimes and blocking frequency

This section aims at assessing whether the models are able 
to reproduce the link between WRs and blocking frequency 
that we observe in the reanalysis. An overall assessment of 
the blocking performance of the PRIMAVERA models is 
discussed in Schiemann et al. (2020). Figure 10 shows the 
mean blocking frequency over the North-Atlantic sector 
corresponding to each regime. Numbers indicate the frac-
tion of blocked days per grid point. For the NAO+ and AR 
regimes, models have a general good agreement with the 
observations. The model deficiencies are mostly seen for 
the other two regimes: both for NAO- and SBL the blocking 

frequency is too low in models. For the SBL, the increased 
resolution has a positive impact, increasing the blocking fre-
quency in most models. On the other side, no clear effect is 
seen for NAO-.

5 � Possible drivers of model performance

In the previous section we analyzed the results obtained for 
each metric both for the individual models and for the two 
HR and LR ensembles. An obvious question is whether it 
is possible to attribute the varying model performances to 
some simple, underlying drivers. To do this, a systematic 
computation of correlations between model performance and 
some plausible drivers has been performed. The underly-
ing hypothesis is that the effect of these drivers might have 
a notable (linear) impact on the metrics, giving a signal 
beyond the “noise” due to other model-specific features. 
Concretely, we correlated all the metrics in Sect. 4 with the 
following quantities:

Fig. 10   The box plots show the average of the blocking frequency over the EAT sector corresponding to a certain WR (fraction of blocked days 
per grid point). For details on the plot construction, refer to Fig. 2
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–	 Atmospheric/Oceanic model grid spacing;
–	 Model performance with respect to observations in:

–	 mean SST in the North-Atlantic;
–	 mean geopotential height at 500 hPa;
–	 low frequency variability of the geopotential at 

500 hPa (i.e. 2D standard deviation at periods longer 
than 5 days);

–	 stationary eddies of the geopotential at 500 hPa (i.e. 
the time-mean departure from the zonal average);

–	 blocking frequency;

–	 Jet latitude variability (i.e. the difference between the 
90th and 10th percentiles of the jet latitude distribution).

To compute the correlations with the atmospheric/oceanic 
resolution we used the nominal horizontal grid spacing in 
km from Table 1, so that a negative correlation means that 
the metric increases with increasing resolution (i.e. with 
smaller grid spacing). For mean SST, mean geopotential, 
low frequency variability, stationary eddies and blocking fre-
quency we used the pattern correlation between the observed 
and simulated pattern inside the EAT sector. The results are 
shown in Table 2, for three metrics: sharpness, variance ratio 
and the mean pattern correlation between the reference and 
simulated regimes. Bold values indicate that the p-value 
is lower than 0.05. For each driver/metric couple we show 
two values: the first is calculated for all models, the second 
excluding the CMCC model, which has a significantly lower 
number of vertical atmospheric levels (see Table 1). This 
was done because that model is a consistent outlier for the 
three metrics considered (see Figs. 3, 5 and 6) and for some 
of the drivers (mean geopot. field, low fr. var., stat. eddies, 
blocking frequency), and thus might skew correlations. In 
fact, computing correlations with and without CMCC pro-
duced notably different numbers in some cases. We also 
tried removing all outlier models separately for each metric 
(i.e. those lying further than 2 sigma from the multi-model 
average) and got very similar results.

At a first look, the sharpness is correlated with many of 
the proposed drivers. However, most of these correlations 
are spuriously produced by the outlier models and disap-
pear or are strongly reduced when they are removed. After 
the filtering, there is a residual significant negative correla-
tion of sharpness with the atmospheric grid spacing and a 
smaller one (non significant) with the oceanic grid spacing. 
This goes in the direction commented in Sect. 4, although 
the correlations are not very high, implying that other fac-
tors might be at play at the same time. Also, this is in line 
with the results by Strommen et al. (2019), which observed 
a systematic increase of sharpness with higher atmospheric 
resolution.

The agreement with the observed WR patterns shows only 
small correlations with the proposed drivers. The only con-
sistent correlations before and after the filtering are found 
for the atmospheric grid spacing (negative, quite small). This 
is in line with the conclusions in Sect. 4, although the dif-
ferences between the models are also playing a role here.

The variance ratio shows the most robust and interesting 
correlations. A small positive correlation with the mean SST 
pattern in the North-Atlantic becomes significant after the 
filtering. This suggests that models which have SSTs closer 
to the observed ones tend to produce more evident and well-
defined regimes. Another important driver of high variance 
ratio is the agreement with the observed mean geopotential 
field and the pattern of stationary eddies. These correlations 
are strong both before and after the filtering. The positive 
correlations with the blocking frequency, low frequency 
variability and jet variability confirm how tightly related 
the different perspectives are.

6 � Discussion and conclusions

Among all the metrics analyzed in Sect. 4, many show clear 
model biases. With “clear” we mean here that we can dis-
tinguish between models and observation just looking at 
some specific metrics. Some of these biases decrease in 

Table 2   Pearson correlation 
between all possible drivers 
considered (rows) and three WR 
metrics (columns)

The value in the left column is calculated for all models, the right one excluding the CMCC model (more 
comments in text). Significant correlations are shown in bold font

Sharpness Variance ratio Mean WR pattern

Atm. grid spacing − 0.23 − 0.54 0.07 − 0.10 − 0.21 − 0.39
Oce. grid spacing − 0.11 − 0.42 0.09 − 0.15 0.07 − 0.12
SST pattern − 0.06 0.09 0.26 0.64 0.00 0.18
Mean geopot. 0.63 0.23 0.91 0.81 0.45 − 0.10
Low freq. variability 0.66 0.09 0.92 0.77 0.56 − 0.04
Stationary eddies 0.68 0.35 0.83 0.64 0.39 − 0.26
Blocking pattern 0.71 0.24 0.93 0.80 0.50 − 0.25
Jet variability 0.61 − 0.28 0.89 0.60 0.72 0.12
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the higher resolution versions of the models, while others 
seem to be insensitive to the model resolution. We will try in 
this Section to assess the most important model biases and 
which metrics most benefit from the increased horizontal 
resolution.

Overall, state-of-the-art coupled climate models are bet-
ter at reproducing the observed North-Atlantic WRs mean 
patterns than their predecessors and there is some indication 
that this is at least partly due to increased model resolution. 
Dawson et al. (2012) saw a clear improvement when passing 
from T159 to T1279, in their single model study. Dawson 
and Palmer (2015) suggested that there is already a substan-
tial improvement at T511 with respect to lower resolutions. 
In agreement with those studies, we also see an improvement 
for most models and for all regimes apart the NAO-. On the 
other side, Strommen et al. (2019) saw no improvement or 
even a slight degradation in the regimes patterns. However, 
these works (Dawson et al. 2012; Dawson and Palmer 2015; 
Strommen et al. 2019) were based on the analysis of AMIP 
simulations, so the results might not be directly comparable 
to ours. Also Cattiaux et al. (2013) saw an improvement in 
the WR patterns, but only between the lowest resolution (96 
× 71) and all the others (from 96 × 96 to 192 × 142). For this 
reason, they claim there is a threshold resolution for such an 
improvement. The question remains of how far we want to 
push the goal for the simulated WR patterns. When look-
ing at Figs. 2, 3 and 4 it is clear that the bootstrap estimate 
of ERA variability is much closer to zero (or 1 in the case 
of pattern correlation) than the models are. However, the 
goal for the models might be put somewhat further from the 
perfect match, taking into consideration that the observed 
internal variability might be larger than that estimated on 
the basis of the last 60 years. Nevertheless, some models 
perform better than the ensemble averages, so there seems 
to be still room for improvement, although this is probably 
not going to be obtained through increasing the horizontal 
resolution only.

As for the regime frequencies, we observed a systematic 
underestimation of the NAO+ occurrence, with a smaller 
overestimation of the AR regime. A systematic underesti-
mation in the occurrence of the NAO+ was also seen in the 
single-model analysis by Cattiaux et al. (2013), although 
their model had a larger positive bias for NAO- and negative 
for SBL. No effect on the NAO+ frequency bias is obtained 
with the increased resolution, but the bias is clear and needs 
to be tackled in future models. We also see a systematic ten-
dency to underestimate the NAO- and NAO+ persistence, 
which is in line with previous works (Strommen et al. 2019; 
Matsueda and Palmer 2018). We see an improvement with 
HR for NAO+ only and a worsening for NAO- with the 
increased resolution.

The quantities that most clearly distinguish between 
models and observation are the variance ratio and 

sharpness. As assessed in Sect. 4, no model is able to reach 
the observed value, though some of them get very close to 
it. For both quantities, we see a depopulation of the low-
value tail of the models and a reduction in the model bias 
with increased resolution. However this is not systematic 
across the ensemble and the effect is model-dependent. A 
stronger signal was originally expected, in line with what 
Strommen et al. (2019) saw for three models. Again, the 
difference might be that the models are run in coupled 
mode here and not atmosphere-only as in Strommen et al. 
(2019). As analysed in Sect. 5, there seems to be some 
influence of the SST bias on the variance ratio, which 
would then tend to be higher in AMIP runs. However, we 
do not see an analogous correlation for sharpness, which 
is also related to the data autocorrelation at one day lag. 
Also, some role might be played by model tuning: a choice 
was made in the PRIMAVERA project, not to tune the 
increased resolution versions of the models. On one side, 
this assures that no other parameter changed apart from 
the model resolution; on the other, the increased resolu-
tion versions might be less equilibrated than the nominal 
ones, thus producing a contrasted output. The potentially 
negative effect of model tuning is expected to be stronger 
in the case of coupled simulations than for AMIP runs.

The correlation analysis in Sect. 5 gives some additional 
hints, although the signal across the ensemble may be some-
what suppressed by other model-specific features. The hori-
zontal atmospheric resolution has a significant correlation 
with sharpness and a small correlation with the WR patterns, 
that are encouraging if summed to the results of Sect. 4. 
However, the most interesting metric is probably the vari-
ance ratio, which is a good candidate for a synthetic indica-
tor of the model performance in reproducing WRs. Indeed, 
the variance ratio shows a robust correlation with the low 
frequency variability and blocking patterns, and also with 
the jet latitude variability, indicating the strong connection 
between these perspectives. On the other side, the variance 
ratio is determined to a certain extent by the model bias in 
the SSTs and the mean geopotential field over the North-
Atlantic. No correlation is found between the variance ratio 
and the atmospheric resolution, although most models actu-
ally improve when increasing the resolution (see Sect. 4.3).

The general picture that appears is that the model perfor-
mance in reproducing the wintertime Euro-Atlantic WRs 
tends to improve by increasing the models’ horizontal reso-
lution, regarding WR patterns, sharpness and variance ratio. 
No clear effect is seen on the regime frequency and persis-
tence. However, the model horizontal resolution is clearly 
not the only key and the real picture is very complicated. 
Reducing the model biases in the mean geopotential and 
SST fields might have an effect on the variance ratio and 
hence on the regime structure. It would be very interesting 
in this sense to have more insight in the role of model tuning, 
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aside that of increased resolution, and to repeat the present 
analysis on a tuned high-res version of the models.
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