51 research outputs found

    The Deepest Supernova Search is Realized in the Hubble Ultra Deep Field Survey

    Full text link
    The Hubble Ultra Deep Field Survey has not only provided the deepest optical and near infrared views of universe, but has enabled a search for the most distant supernovae to z~2.2. We have found four supernovae by searching spans of integrations of the Ultra Deep Field and the Ultra Deep Field Parallels taken with the Hubble Space Telescope paired with the Advanced Camera for Surveys and the Near Infrared Multi Object Spectrometer. Interestingly, none of these supernovae were at z>1.4, despite the substantially increased sensitivity per unit area to such objects over the Great Observatories Origins Deep Survey. We present the optical photometric data for the four supernovae. We also show that the low frequency of Type Ia supernovae observed at z>1.4 is statistically consistent with current estimates of the global star formation history combined with the non-trivial assembly time of SN Ia progenitors.Comment: 24 pages (6 figures), submitted to the Astronomical Journa

    Empirical Delay Time Distributions of Type Ia Supernovae From The Extended GOODS/HST Supernova Survey

    Full text link
    Using the Hubble Space Telescope ACS imaging of the GOODS North and South fields during Cycles 11, 12, and 13, we derive empirical constraints on the delay-time distribution function for type Ia supernovae. We extend our previous analysis to the three-year sample of 56 SNe Ia over the range 0.2<z<1.8, using a Markov chain Monte Carlo to determine the best-fit unimodal delay-time distribution function. The test, which ultimately compares the star formation rate density history to the unbinned volumetric SN Ia rate history from the GOODS/HST-SN survey, reveals a SN Ia delay-time distribution that is tightly confined to 3-4 Gyrs (to >95% confidence). This result is difficult to resolve with any intrinsic delay-time distribution function (bimodal or otherwise), in which a substantial fraction (e.g., >10%) of events are ``prompt'', requiring less than approximately 1 Gyr to develop from formation to explosion. The result is, however, strongly motivated by the decline in the number of SNe Ia at z>1.2. Sub-samples of the HST-SN data confined to lower redshifts (z<1) show plausible delay-time distributions that are dominated by prompt events, which is more consistent with results from low-redshift supernova samples and supernova host galaxy properties. Scenarios in which a substantial fraction of z>1.2 supernovae are extraordinarily obscured by dust may partly explain the differences in low-z and high-z results. Other possible resolutions may include environmental dependencies (such as gas-phase metallicity) that affect the progenitor mechanism efficiency, especially in the early universe.Comment: 12 pages, 9 figures, accepted to the Astrophysical Journa

    High Redshift Supernova Rates

    Full text link
    We use a sample of 42 supernovae detected with the Advanced Camera for Surveys on-board the Hubble Space Telescope as part of the Great Observatories Origins Deep Survey to measure the rate of core collapse supernovae to z~0.7 and type Ia supernovae to z~1.6. This significantly increases the redshift range where supernova rates have been estimated from observations. The rate of core collapse supernovae can be used as an independent probe of the cosmic star formation rate. Based on the observations of 17 core collapse supernovae, we measure an increase in the core collapse supernova rate by a factor of 1.6 in the range 0.3<z<0.7, and an overall increase by a factor of 7 to z~0.7 in comparison to the local core collapse supernova rate. The increase in the rate in this redshift range in consistent with recent measurements of the star formation rate derived from UV-luminosity densities and IR datasets. Based on 25 type Ia supernovae, we find a SN Ia rate that is a factor 3-5 higher at z~1 compared to earlier estimates at lower redshifts (z<0.5), implying that the type Ia supernova rate traces a higher star formation rate at redshifts z>1 compared to low redshift. At higher redshift (z>1), we find a suggested decrease in the type Ia rate with redshift. This evolution of the Ia rate with redshift is consistent with a type Ia progenitor model where there is a substantial delay between the formation of the progenitor star and the explosion of the supernova. Assuming that the type Ia progenitor stars have initial main sequence masses 3-8 M_Sun, we find that 5-7% of the available progenitors explode as type Ia supernovae.Comment: 16 pages, 3 figures, accepted for publication in the Astrophysical Journa

    The Extended Hubble Space Telescope Supernova Survey: The Rate of Core Collapse Supernovae to z~1

    Full text link
    We use a sample of 45 core collapse supernovae detected with the Advanced Camera for Surveys on-board the Hubble Space Telescope to derive the core collapse supernova rate in the redshift range 0.1<z<1.3. In redshift bins centered on =0.39, =0.73, and =1.11, we find rates 3.00 {+1.28}{-0.94}{+1.04}{-0.57}, 7.39 {+1.86}{-1.52}{+3.20}{-1.60}, and 9.57 {+3.76}{-2.80}{+4.96}{-2.80}, respectively, given in units yr^{-1} Mpc^{-3} 10^{-4} h_{70}^3. The rates have been corrected for host galaxy extinction, including supernovae missed in highly dust enshrouded environments in infrared bright galaxies. The first errors represent statistical while the second are the estimated systematic errors. We perform a detailed discussion of possible sources of systematic errors and note that these start to dominate over statistical errors at z>0.5, emphasizing the need to better control the systematic effects. For example, a better understanding of the amount of dust extinction in the host galaxies and knowledge of the supernova luminosity function, in particular the fraction of faint M > -15 supernovae, is needed to better constrain the rates. When comparing our results with the core collapse supernova rate based on the star formation rate, we find a good agreement, consistent with the supernova rate following the star formation rate, as expected.Comment: 12 pages, 4 figures, ApJ, replaced to match version in pres

    New Hubble Space Telescope Discoveries of Type Ia Supernovae at z > 1: Narrowing Constraints on the Early Behavior of Dark Energy

    Get PDF
    We have discovered 21 new Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to trace the history of cosmic expansion over the last 10 billion years. These objects, which include 13 spectroscopically confirmed SNe Ia at z > 1, were discovered during 14 epochs of reimaging of the GOODS fields North and South over two years with the Advanced Camera for Surveys on HST. Together with a recalibration of our previous HST-discovered SNe Ia, the full sample of 23 SNe Ia at z > 1 provides the highest-redshift sample known. Combined with previous SN Ia datasets, we measured H(z) at discrete, uncorrelated epochs, reducing the uncertainty of H(z>1) from 50% to under 20%, strengthening the evidence for a cosmic jerk--the transition from deceleration in the past to acceleration in the present. The unique leverage of the HST high-redshift SNe Ia provides the first meaningful constraint on the dark energy equation-of-state parameter at z >1. The result remains consistent with a cosmological constant (w(z)=-1), and rules out rapidly evolving dark energy (dw/dz >>1). The defining property of dark energy, its negative pressure, appears to be present at z>1, in the epoch preceding acceleration, with ~98% confidence in our primary fit. Moreover, the z>1 sample-averaged spectral energy distribution is consistent with that of the typical SN Ia over the last 10 Gyr, indicating that any spectral evolution of the properties of SNe Ia with redshift is still below our detection threshold.Comment: typos, references corrected, minor additions to exposition 82 pages, 17 figures, 6 tables. Data also available at: http://braeburn.pha.jhu.edu/~ariess/R06. Accepted, Astrophysical Journal vol. 656 for March 10, 200

    RELICS: Strong Lens Models for Five Galaxy Clusters From the Reionization Lensing Cluster Survey

    Get PDF
    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at z>6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7-0349, and ACT-CLJ0102-49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space TelescopesComment: Accepted to Ap
    • 

    corecore