5 research outputs found

    Sex-specific effects of nutritional supplements in infants born early or small: Protocol for an individual participant data meta-analysis (ESSENCE IPD-MA)

    No full text
    Introduction Preterm and small for gestational age (SGA) infants are at increased risk of poor growth, disability and delayed development. While growing up they are also at increased risk of obesity, diabetes and later heart disease. The risk of such adverse outcomes may be altered by how preterm and SGA infants are fed after birth. Faltering postnatal growth is common due to failure to achieve recommended high energy and protein intakes, and thus preterm and SGA infants are often provided with supplemental nutrition soon after birth. Enhanced nutrition has been associated with improved early growth and better cognitive development. However, limited evidence suggests that faster growth may increase the risk for later adiposity, metabolic and cardiovascular disease, and that such risks may differ between girls and boys. Methods and analysis We will search Ovid MEDLINE, Embase, Cochrane CENTRAL, Cochrane Database of Systematic Reviews, controlled-trials.com, ClinicalTrials. gov and anzctr.org.au for randomised trials that studied the effects of macronutrient supplements for preterm and SGA infants on (i) developmental and metabolic and (ii) growth outcomes after hospital discharge. The outcomes will be (i) cognitive impairment and metabolic risk (co-primary) and (ii) body mass index. Individual participant data (IPD) from all available trials will be included using an intention-to-treat approach. A one-stage procedure for IPD meta-analysis (MA) will be used, accounting for clustering of participants within studies. Exploratory subgroup analyses will further investigate sources of heterogeneity, including sex and size of infants, different timing, duration and type of supplements. Ethics and dissemination This IPD-MA is approved by the University of Auckland Human Participants Ethics Committee (reference number: 019874). Individual studies have approval from relevant local ethics committees. Results will be disseminated in a peer-reviewed journal and presented at international conferences

    Sex-Specific Effects of Nutritional Supplements for Infants Born Early or Small: An Individual Participant Data Meta-Analysis (ESSENCE IPD-MA) II: Growth

    Get PDF
    International audienceNeonatal nutritional supplements may improve early growth for infants born small, but effects on long-term growth are unclear and may differ by sex. We assessed the effects of early macronutrient supplements on later growth. We searched databases and clinical trials registers from inception to April 2019. Participant-level data from randomised trials were included if the intention was to increase macronutrient intake to improve growth or development of infants born preterm or small-for-gestational-age. Co-primary outcomes were cognitive impairment and metabolic risk. Supplementation did not alter BMI in childhood (kg/m(2): adjusted mean difference (aMD) -0.11[95% CI -0.47, 0.25], p = 0.54; 3 trials, n = 333). Supplementation increased length (cm: aMD 0.37[0.01, 0.72], p = 0.04; 18 trials, n = 2008) and bone mineral content (g: aMD 10.22[0.52, 19.92], p = 0.04; 6 trials, n = 313) in infancy, but not at older ages. There were no differences between supplemented and unsupplemented groups for other outcomes. In subgroup analysis, supplementation increased the height z-score in male toddlers (aMD 0.20[0.02, 0.37], p = 0.03; 10 trials, n = 595) but not in females, and no significant sex interaction was observed (p = 0.21). Macronutrient supplementation for infants born small may not alter BMI in childhood. Supplementation increased growth in infancy, but these effects did not persist in later life. The effects did not differ between boys and girls

    Sex-specific effects of nutritional supplements in infants born early or small: Protocol for an individual participant data meta-analysis (ESSENCE IPD-MA)

    No full text
    Introduction Preterm and small for gestational age (SGA) infants are at increased risk of poor growth, disability and delayed development. While growing up they are also at increased risk of obesity, diabetes and later heart disease. The risk of such adverse outcomes may be altered by how preterm and SGA infants are fed after birth. Faltering postnatal growth is common due to failure to achieve recommended high energy and protein intakes, and thus preterm and SGA infants are often provided with supplemental nutrition soon after birth. Enhanced nutrition has been associated with improved early growth and better cognitive development. However, limited evidence suggests that faster growth may increase the risk for later adiposity, metabolic and cardiovascular disease, and that such risks may differ between girls and boys. Methods and analysis We will search Ovid MEDLINE, Embase, Cochrane CENTRAL, Cochrane Database of Systematic Reviews, controlled-trials.com, ClinicalTrials. gov and anzctr.org.au for randomised trials that studied the effects of macronutrient supplements for preterm and SGA infants on (i) developmental and metabolic and (ii) growth outcomes after hospital discharge. The outcomes will be (i) cognitive impairment and metabolic risk (co-primary) and (ii) body mass index. Individual participant data (IPD) from all available trials will be included using an intention-to-treat approach. A one-stage procedure for IPD meta-analysis (MA) will be used, accounting for clustering of participants within studies. Exploratory subgroup analyses will further investigate sources of heterogeneity, including sex and size of infants, different timing, duration and type of supplements. Ethics and dissemination This IPD-MA is approved by the University of Auckland Human Participants Ethics Committee (reference number: 019874). Individual studies have approval from relevant local ethics committees. Results will be disseminated in a peer-reviewed journal and presented at international conferences

    Sex-Specific Effects of Nutritional Supplements for Infants Born Early or Small: An Individual Participant Data Meta-Analysis (ESSENCE IPD-MA) I-Cognitive Function and Metabolic Risk

    Get PDF
    International audienceNeonatal nutritional supplements are widely used to improve growth and development but may increase risk of later metabolic disease, and effects may differ by sex. We assessed effects of supplements on later development and metabolism. We searched databases and clinical trials registers up to April 2019. Participant-level data from randomised trials were included if the intention was to increase macronutrient intake to improve growth or development of infants born preterm or small-for-gestational-age. Co-primary outcomes were cognitive impairment and metabolic risk. Supplementation did not alter cognitive impairment in toddlers (13 trials, n = 1410; adjusted relative risk (aRR) 0.88 [95% CI 0.68, 1.13]; p = 0.31) or older ages, nor alter metabolic risk beyond 3 years (5 trials, n = 438; aRR 0.94 [0.76, 1.17]; p = 0.59). However, supplementation reduced motor impairment in toddlers (13 trials, n = 1406; aRR 0.76 [0.60, 0.97]; p = 0.03), and improved motor scores overall (13 trials, n = 1406; adjusted mean difference 1.57 [0.14, 2.99]; p = 0.03) and in girls not boys (p = 0.03 for interaction). Supplementation lowered triglyceride concentrations but did not affect other metabolic outcomes (high-density and low-density lipoproteins, cholesterol, fasting glucose, blood pressure, body mass index). Macronutrient supplementation for infants born small may not alter later cognitive function or metabolic risk, but may improve early motor function, especially for girls
    corecore